
Algorithms for Big Data Fall 2020

Homework 1 Solutions

1 Problem 1: Coin Flipping

Let Bern(p) for parameter p ∈ (0, 1) denote the distribution that equals one with probability p and

equals 0 with probability 1 − p. In other words, if Xi ∼ Bern(p), then Xi can be thought of as a

coin that comes up heads with probability p and tails with probability 1 − p. Assume that p is an

unknown parameter. You want to determine the value of p by using some number t of i.i.d. samples

X1, X2, . . . , Xt ∼ Bern(p). Consider the estimate X = 1
t

∑t
i=1Xi for the value of p.

(a) Compute the expectation E[X] and the variance Var(X) as a function of p and t.

(b) For an accuracy parameter ε ∈ (0, 1), determine a value of t as a function of p and ε such that

Pr [(1− ε)p ≤ X ≤ (1 + ε)p] ≥ 9

10
.

Solution: (a) The random variable X is given as

X =
1

t

t∑
i=1

Xi.

By linearity of expectation:

E[X] =
1

t

t∑
i=1

E[Xi]

Since, Xis are iid samples and Xi ∼ Bern(p)

E[X] =
1

t

t∑
i=1

E[Xi]

=
1

t

t∑
i=1

p

= p.

The variance, Var(X) can be written as:

Var(X) = Var(
1

t

t∑
i=1

Xi)

=
1

t2
Var(

t∑
i=1

Xi)

=
1

t2
(

t∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj))
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Since, Xis are iids, Cov(Xi, Xj) = 0 ∀ i 6= j

Var(X) =
1

t2

t∑
i=1

Var(Xi)

=
1

t2
tVar(Xi)

=
p(1− p)

t
.

(b) Observe that the inequality in part(b) of the problem can be rewritten as:

Pr(|X − p| ≤ pε) ≥ 9

10
.

Reversing the inequality, we get,

Pr(|X − p| ≥ pε) ≤ 1

10
. (1)

According to Chebyshev’s Inequality,

P (|X − µ| ≥ α) ≤ Var(X)

α2
.

Therefore, for Inequality 1 to hold, we need

Var(X)

α2
≤ 1

10
p(1− p)
tp2ε2

≤ 1

10

Therefore,

t ≥ 10(1− p)
pε2

.

Observe that using Hoeffding’s inequality you can get a much better bound,

t ≥ log(20)

2p2ε2
(verify this)
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2 Problem 2: Balls and Bins

Consider n bins, where several balls are thrown. We throw each ball independently in a uniformly

random bin. Let X be a random variable equal to the number of balls we need to throw until every

bin contains at least one ball. Show that

E[X] = n ·
n∑

i=1

1

i
.

Use that
∑n

i=1
1
i = Θ(log n) to conclude that X = O(n log n) with probability at least 9/10.

Solution: Let X be the number of balls needed to fill n bins such that each bin has at least one ball.

The key idea is to split the random process into ‘rounds’ based on the number of bins that are

non-empty. We define random variables X1, X2, . . . , Xn as follows:

Let Xi denote the number of balls needed so that one of the remaining n − (i − 1) bins gets

its first ball, given that exactly i− 1 bins already have at least one ball.

The probability that one of the remaining n − (i − 1) bins gets a ball is exactly
n− (i− 1)

n
.

Therefore,

Pr(Xi = 1) =
n− (i− 1)

n
= Pi

In other words, by independence of the balls, Xi has a geometric distribution with

E[Xi] =
1

Pi
.

By linearity of expectation:

E[X] =

n∑
i=1

E[Xi]

=
1

P1
+

1

P2
+ · · ·+ 1

Pn

=
n

n
+

n

n− 1
+ · · ·+ n

1

= n ·
n∑

i=1

1

i
.

Use the approximation
∑n

i=1 1/i = c log n for a constant c. Also, we have that

Pr[X ≥ 10 · E[X]] ≤ 1/10

using Markov’s inequality. Therefore, we conclude that X ≤ 10cn log n = O(n log n) with

probability at least 0.9.
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3 Problem 3: Maximum Element

Let N (0, 1) denote the standard normal distribution. Let X1, X2, . . . , Xn ∼ N (0, 1) be n random

variables sampled i.i.d. uniformly. Determine a function f(n) that is as small as possible such that

with probability at least 1− 1/n, it holds that

max
i∈[n]

Xi ≤ f(n).

In other words, provide an upper bound on ‖ ~X‖∞ that holds with probability at least 1−1/n, where
~X = (X1 X2 · · · Xn) is an n-dimensional vector.

Solution: The problem asks us to find a function f(n) as small as possible such that,

Pr(max
i∈[n]

Xi ≤ f(n)) ≥ 1− 1

n

or

Pr(max
i∈[n]

Xi ≥ f(n)) ≤ 1

n
.

Observe that stating maxi∈[n]Xi ≥ f(n) is equivalent to stating that there is at least one i

such that Xi ≥ f(n). This is easy to prove. Hint: Try proving that if any one of the two

statements is true, the other will be true as well.

Let Ei be the event: Xi ≥ f(n). Therefore,

Pr(max
i∈[n]

Xi ≥ f(n)) = Pr(

n⋃
i=1

Ei)

Using Union bound, we get,

Pr(

n⋃
i=1

Ei) ≤
n∑

i=1

Pr(Ei).

According to Lemma 5 from the Lecture 2 notes, if X ∼ N (0, 1), then for any λ > 0, we have,

Pr(|X| > λ) ≤ e
−λ2

2 .

Since, N (0, 1) is symmetrical with respect to 0, Pr(X ≥ λ) = 1
2 Pr(|X| ≥ λ). Therefore,

Pr(X ≥ λ) ≤ 1

2
e

−λ2
2

Next, we use this inequality to get a tight bound on the sum as shown below:

n∑
i=1

Pr(Ei) =

n∑
i=1

Pr(Xi ≥ f(n)) ≤ n

2
e−

f(n)2

2

Hence,

Pr(max
i∈[n]

Xi ≥ f(n)) ≤ n

2
e−

f(n)2

2

Equating n
2 e
− f(n)2

2 with 1
n , we get

f(n) =
√

4 log(n)− 2 log(2).
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