Homework 1 Solutions

1 Problem 1: Coin Flipping

Let $\operatorname{Bern}(p)$ for parameter $p \in(0,1)$ denote the distribution that equals one with probability p and equals 0 with probability $1-p$. In other words, if $X_{i} \sim \operatorname{Bern}(p)$, then X_{i} can be thought of as a coin that comes up heads with probability p and tails with probability $1-p$. Assume that p is an unknown parameter. You want to determine the value of p by using some number t of i.i.d. samples $X_{1}, X_{2}, \ldots, X_{t} \sim \operatorname{Bern}(p)$. Consider the estimate $X=\frac{1}{t} \sum_{i=1}^{t} X_{i}$ for the value of p.
(a) Compute the expectation $\mathbb{E}[X]$ and the variance $\operatorname{Var}(X)$ as a function of p and t.
(b) For an accuracy parameter $\varepsilon \in(0,1)$, determine a value of t as a function of p and ε such that

$$
\operatorname{Pr}[(1-\varepsilon) p \leq X \leq(1+\varepsilon) p] \geq \frac{9}{10}
$$

Solution: (a) The random variable X is given as

$$
X=\frac{1}{t} \sum_{i=1}^{t} X_{i}
$$

By linearity of expectation:

$$
\mathbb{E}[X]=\frac{1}{t} \sum_{i=1}^{t} \mathbb{E}\left[X_{i}\right]
$$

Since, X_{i} s are iid samples and $X_{i} \sim \operatorname{Bern}(p)$

$$
\begin{aligned}
\mathbb{E}[X] & =\frac{1}{t} \sum_{i=1}^{t} \mathbb{E}\left[X_{i}\right] \\
& =\frac{1}{t} \sum_{i=1}^{t} p \\
& =p
\end{aligned}
$$

The variance, $\operatorname{Var}(X)$ can be written as:

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Var}\left(\frac{1}{t} \sum_{i=1}^{t} X_{i}\right) \\
& =\frac{1}{t^{2}} \operatorname{Var}\left(\sum_{i=1}^{t} X_{i}\right) \\
& =\frac{1}{t^{2}}\left(\sum_{i=1}^{t} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)\right)
\end{aligned}
$$

Since, X_{i} s are iids, $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0 \forall i \neq j$

$$
\begin{aligned}
\operatorname{Var}(X) & =\frac{1}{t^{2}} \sum_{i=1}^{t} \operatorname{Var}\left(X_{i}\right) \\
& =\frac{1}{t^{2}} t \operatorname{Var}\left(X_{i}\right) \\
& =\frac{p(1-p)}{t}
\end{aligned}
$$

(b) Observe that the inequality in part(b) of the problem can be rewritten as:

$$
\operatorname{Pr}(|X-p| \leq p \varepsilon) \geq \frac{9}{10}
$$

Reversing the inequality, we get,

$$
\begin{equation*}
\operatorname{Pr}(|X-p| \geq p \varepsilon) \leq \frac{1}{10} \tag{1}
\end{equation*}
$$

According to Chebyshev's Inequality,

$$
P(|X-\mu| \geq \alpha) \leq \frac{\operatorname{Var}(X)}{\alpha^{2}}
$$

Therefore, for Inequality 1 to hold, we need

$$
\begin{aligned}
\frac{\operatorname{Var}(X)}{\alpha^{2}} & \leq \frac{1}{10} \\
\frac{p(1-p)}{t p^{2} \varepsilon^{2}} & \leq \frac{1}{10}
\end{aligned}
$$

Therefore,

$$
t \geq \frac{10(1-p)}{p \varepsilon^{2}}
$$

Observe that using Hoeffding's inequality you can get a much better bound,

$$
t \geq \frac{\log (20)}{2 p^{2} \varepsilon^{2}} \quad \text { (verify this) }
$$

2 Problem 2: Balls and Bins

Consider n bins, where several balls are thrown. We throw each ball independently in a uniformly random bin. Let X be a random variable equal to the number of balls we need to throw until every bin contains at least one ball. Show that

$$
\mathbb{E}[X]=n \cdot \sum_{i=1}^{n} \frac{1}{i}
$$

Use that $\sum_{i=1}^{n} \frac{1}{i}=\Theta(\log n)$ to conclude that $X=O(n \log n)$ with probability at least $9 / 10$.

Solution: Let X be the number of balls needed to fill n bins such that each bin has at least one ball. The key idea is to split the random process into 'rounds' based on the number of bins that are non-empty. We define random variables $X_{1}, X_{2}, \ldots, X_{n}$ as follows:
Let X_{i} denote the number of balls needed so that one of the remaining $n-(i-1)$ bins gets its first ball, given that exactly $i-1$ bins already have at least one ball.
The probability that one of the remaining $n-(i-1)$ bins gets a ball is exactly $\frac{n-(i-1)}{n}$. Therefore,

$$
\operatorname{Pr}\left(X_{i}=1\right)=\frac{n-(i-1)}{n}=P_{i}
$$

In other words, by independence of the balls, X_{i} has a geometric distribution with

$$
\mathbb{E}\left[X_{i}\right]=\frac{1}{P_{i}}
$$

By linearity of expectation:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\frac{1}{P_{1}}+\frac{1}{P_{2}}+\cdots+\frac{1}{P_{n}} \\
& =\frac{n}{n}+\frac{n}{n-1}+\cdots+\frac{n}{1} \\
& =n \cdot \sum_{i=1}^{n} \frac{1}{i}
\end{aligned}
$$

Use the approximation $\sum_{i=1}^{n} 1 / i=c \log n$ for a constant c. Also, we have that

$$
\operatorname{Pr}[X \geq 10 \cdot \mathbb{E}[X]] \leq 1 / 10
$$

using Markov's inequality. Therefore, we conclude that $X \leq 10 c n \log n=O(n \log n)$ with probability at least 0.9.

3 Problem 3: Maximum Element

Let $\mathcal{N}(0,1)$ denote the standard normal distribution. Let $X_{1}, X_{2}, \ldots, X_{n} \sim \mathcal{N}(0,1)$ be n random variables sampled i.i.d. uniformly. Determine a function $f(n)$ that is as small as possible such that with probability at least $1-1 / n$, it holds that

$$
\max _{i \in[n]} X_{i} \leq f(n)
$$

In other words, provide an upper bound on $\|\vec{X}\|_{\infty}$ that holds with probability at least $1-1 / n$, where $\vec{X}=\left(\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{n}\end{array}\right)$ is an n-dimensional vector.

Solution: The problem asks us to find a function $f(n)$ as small as possible such that,

$$
\operatorname{Pr}\left(\max _{i \in[n]} X_{i} \leq f(n)\right) \geq 1-\frac{1}{n}
$$

or

$$
\operatorname{Pr}\left(\max _{i \in[n]} X_{i} \geq f(n)\right) \leq \frac{1}{n}
$$

Observe that stating $\max _{i \in[n]} X_{i} \geq f(n)$ is equivalent to stating that there is at least one i such that $X_{i} \geq f(n)$. This is easy to prove. Hint: Try proving that if any one of the two statements is true, the other will be true as well.
Let E_{i} be the event: $X_{i} \geq f(n)$. Therefore,

$$
\operatorname{Pr}\left(\max _{i \in[n]} X_{i} \geq f(n)\right)=\operatorname{Pr}\left(\bigcup_{i=1}^{n} E_{i}\right)
$$

Using Union bound, we get,

$$
\operatorname{Pr}\left(\bigcup_{i=1}^{n} E_{i}\right) \leq \sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)
$$

According to Lemma 5 from the Lecture 2 notes, if $X \sim \mathcal{N}(0,1)$, then for any $\lambda>0$, we have,

$$
\operatorname{Pr}(|X|>\lambda) \leq e^{\frac{-\lambda^{2}}{2}}
$$

Since, $\mathcal{N}(0,1)$ is symmetrical with respect to $0, \operatorname{Pr}(X \geq \lambda)=\frac{1}{2} \operatorname{Pr}(|X| \geq \lambda)$. Therefore,

$$
\operatorname{Pr}(X \geq \lambda) \leq \frac{1}{2} e^{\frac{-\lambda^{2}}{2}}
$$

Next, we use this inequality to get a tight bound on the sum as shown below:

$$
\sum_{i=1}^{n} \operatorname{Pr}\left(E_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i} \geq f(n)\right) \leq \frac{n}{2} e^{-\frac{f(n)^{2}}{2}}
$$

Hence,

$$
\operatorname{Pr}\left(\max _{i \in[n]} X_{i} \geq f(n)\right) \leq \frac{n}{2} e^{-\frac{f(n)^{2}}{2}}
$$

Equating $\frac{n}{2} e^{-\frac{f(n)^{2}}{2}}$ with $\frac{1}{n}$, we get

$$
f(n)=\sqrt{4 \log (n)-2 \log (2)}
$$

