Homework 2 Solutions

Problem 1: Approximate Counting, Remix

In Lectures 4 and 5 , we analyzed Morris' algorithm, which approximated the number of updates n by using the following estimator. Initialize a counter X to 0 , and for each update, increment X with probability $1 / 2^{X}$. Then, the algorithm output $\tilde{n}=2^{X}-1$. To obtain good bounds on the probability that $|\tilde{n}-n|<\varepsilon n$, we considered Morris+ and Morris++ that eventually took the median of many means, where each mean averaged many estimates. Consider a different algorithm, where we still initialize X to 0 , but we increment it with probability $1 /(1+a)^{X}$ for some parameter a.
(a) Determine an estimator \tilde{n} as a function of X and a such that it is an unbiased estimator, that is, $\mathbb{E}[\tilde{n}]=n$ after n updates.
(b) How small must a be so that our estimate \tilde{n} of n satisfies $|\tilde{n}-n|<\varepsilon n$ with at least $9 / 10$ probability when we return the output of a single estimator (instead of averaging many estimators as in class)?
(c) Derive a bound S on the space (in bits) as a function of n, ε, a so that this algorithm uses at most S space with at least $9 / 10$ probability after n increments (in addition to satisfying $|\tilde{n}-n|<\varepsilon n$ with probability at least $9 / 10$).

Solution: (a) Analogous to the original Morris algorithm, let's try and calculate $\mathbb{E}\left[(1+a)^{X_{n+1}}\right]$ and see if we can come up with an unbiased estimator for \tilde{n}.

$$
\begin{aligned}
\mathbb{E}\left[(1+a)^{X_{n+1}}\right] & =\sum_{j=0}^{\infty} \operatorname{Pr}\left(X_{n}=j\right) \cdot \mathbb{E}\left((1+a)^{X_{n}} \mid X_{n}=j\right) \\
& =\sum_{j=0}^{\infty} \operatorname{Pr}\left(X_{n}=j\right) \cdot\left((1+a)^{j}\left(1-\frac{1}{(1+a)^{j}}\right)+\frac{1}{(1+a)^{j}} \cdot(1+a)^{j+1}\right) \\
& =\mathbb{E}\left[(1+a)^{X_{n}}\right]+a
\end{aligned}
$$

Observe that this is a recursive definition,

$$
\begin{aligned}
& \mathbb{E}\left[(1+a)^{X_{0}}\right]=1 \\
& \mathbb{E}\left[(1+a)^{X_{1}}\right]=\mathbb{E}\left[(1+a)^{X_{0}}\right]+1=a+1 \\
& \mathbb{E}\left[(1+a)^{X_{2}}\right]=\mathbb{E}\left[(1+a)^{X_{1}}\right]+1=2 a+1
\end{aligned}
$$

This can be written generally as $\mathbb{E}\left[(1+a)^{X_{n}}\right]=n a+1$. Therefore,

$$
\tilde{n}=\frac{(1+a)^{X_{n}}-1}{a}
$$

is an unbiased estimator of n because

$$
\mathbb{E}[\tilde{n}]=\mathbb{E}\left[\frac{(1+a)^{X_{n}}-1}{a}\right]=\frac{1}{a}\left(\mathbb{E}\left[(1+a)^{X_{n}}\right]-1\right)=n
$$

(b) We need to find a bound on a such that for a given ε,

$$
\begin{equation*}
\operatorname{Pr}(|\tilde{n}-n| \geq \varepsilon n) \leq \frac{1}{10} \tag{1}
\end{equation*}
$$

According to Chebyshev's Inequality,

$$
\operatorname{Pr}(|\tilde{n}-n| \geq \varepsilon n) \leq \frac{\operatorname{Var}(\tilde{n})}{\varepsilon^{2} n^{2}}
$$

Now,

$$
\begin{equation*}
\operatorname{Var}(\tilde{n})=\frac{1}{a^{2}} \operatorname{Var}\left((1+a)^{X_{n}}-1\right)=\frac{1}{a^{2}} \operatorname{Var}\left((1+a)^{X_{n}}\right) \tag{2}
\end{equation*}
$$

Observe,

$$
\begin{equation*}
\operatorname{Var}\left((1+a)^{X_{n}}\right)=\mathbb{E}\left[(1+a)^{2 X_{n}}\right]-\left(\mathbb{E}\left[(1+a)^{X_{n}}\right]\right)^{2} \tag{3}
\end{equation*}
$$

Similar to the original Morris algorithm $(a=1), \mathbb{E}\left[(1+a)^{2 X_{n}}\right]$ is quadratic.
To figure out the values of p, q and r, we can use polynomial interpolation, let's assume that

$$
\mathbb{E}\left[(1+a)^{2 X_{n}}\right]=p n^{2}+q n+r
$$

We evaluate the expectation at three values, $n \in\{0,1,2\}$. This gives us three linear equations in p, q and r that can be solved to get the value of the coefficients. Doing this we get,

$$
p=\frac{a^{3}}{2}+a^{2} \quad \text { and } \quad q=2 a-\frac{a^{3}}{2} \quad \text { and } \quad r=1
$$

(by setting $a=1$, we get values for the original Morris algorithm, namely $p=q=3 / 2$). Overall, we have

$$
\operatorname{Var}\left[(1+a)_{n}^{X}\right]=\Theta\left(a^{3} n^{2}\right)
$$

We can figure out the constants with some effort, but for the sake of brevity, let k be a constant such that

$$
\operatorname{Var}\left[(1+a)_{n}^{X}\right] \leq k a^{3} n^{2}
$$

Using this in Eq. (2), we get,

$$
\operatorname{Var}(\tilde{n}) \leq k a n^{2}
$$

Therefore Inequality 1 holds if,

$$
\begin{aligned}
\frac{\operatorname{Var}(\tilde{n})}{\varepsilon^{2} n^{2}} & \leq \frac{1}{10} \\
\frac{k a n^{2}}{\varepsilon^{2} n^{2}} & \leq \frac{1}{10} \\
a & \leq \frac{\varepsilon^{2}}{k 10} \\
a & =O\left(\varepsilon^{2}\right)
\end{aligned}
$$

(c) In this part, we need to find a bound S on $\log _{2}(X)$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(\log _{2}(X) \geq S\right) \leq \frac{1}{10} \tag{4}
\end{equation*}
$$

Since, $\operatorname{Pr}(x>y)=\operatorname{Pr}\left(a^{x}>a^{y}\right)$ if $a>1$

$$
\operatorname{Pr}\left(\log _{2}(X) \geq S\right)=\operatorname{Pr}\left(X \geq 2^{S}\right)=\operatorname{Pr}\left((1+a)^{X} \geq(1+a)^{2^{S}}\right)
$$

Using Markov's Inequality,

$$
\operatorname{Pr}\left((1+a)^{X} \geq(1+a)^{2^{S}}\right) \leq \frac{\mathbb{E}\left[(1+a)^{X}\right]}{(1+a)^{2^{S}}}
$$

Therefore, Inequality 4 holds if,

$$
\begin{aligned}
\frac{\mathbb{E}\left[(1+a)^{X}\right]}{(1+a)^{2^{S}}} & \leq \frac{1}{10} \\
n a+1 & \leq \frac{(1+a)^{2^{S}}}{10} \\
(1+a)^{2^{S}} & \geq 10(n a+1) \\
S & \geq \log _{2} \log _{1+a}[10(n a+1)] \\
S & =\Omega\left(\log _{\log _{1+a}}(n a)\right)
\end{aligned}
$$

In order to also satisfy the constraint in Part (b), a must be $O\left(\varepsilon^{2}\right)$.

Problem 2: Pairwise Independence

(a) Let q be a prime number. For integers $c, d \in\{0,1, \ldots, q-1\}$, define the hash function $h_{c, d}$ as

$$
h_{c, d}(x)=c x+d \bmod q
$$

Let \mathcal{H} be the set of all such hash functions, defined as

$$
\mathcal{H}=\left\{h_{c, d} \mid c, d \in\{0,1, \ldots, q-1\}\right\} .
$$

Prove that \mathcal{H} is a pairwise independent hash family. That is, prove that for any distinct $i \neq i^{\prime}$ and any j, j^{\prime}, we have that

$$
\operatorname{Pr}_{h_{c, d} \in \mathcal{H}}\left[h_{c, d}(i)=j \text { and } h_{c, d}\left(i^{\prime}\right)=j^{\prime}\right]=\frac{1}{q^{2}},
$$

where $h_{c, d} \in \mathcal{H}$ is chosen uniformly by choosing c, d at random in $\{0,1, \ldots, q-1\}$.
Hint: Start with $q=2$ and $\{0,1\}$ values; then, generalize to all prime $q \geq 2$. For the general case, you can use that $c x+d=j$ has a unique solution in terms of x if $c \neq 0$.

Solution 1: For distinct $i \neq i^{\prime}$ and any j, j^{\prime}, we need to show that

$$
\underset{h_{c, d} \in \mathcal{H}}{\operatorname{Pr}}\left[h_{c, d}(i)=j \text { and } h_{c, d}\left(i^{\prime}\right)=j^{\prime}\right]=\frac{1}{q^{2}},
$$

Observe that, $c \cdot i+d \bmod q=j$ and $c \cdot i^{\prime}+d \bmod q=j^{\prime}$ can also be written in the matrix form as:

$$
\left[\begin{array}{ll}
i & 1 \\
i^{\prime} & 1
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{l}
j \\
j^{\prime}
\end{array}\right]
$$

where the addition and multiplication are under mod q. Therefore, c and d can be uniquely determined if the matrix

$$
\left[\begin{array}{cc}
i & 1 \\
i^{\prime} & 1
\end{array}\right]
$$

is invertible or non-singular as shown below:

$$
\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{ll}
i & 1 \\
i^{\prime} & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
j \\
j^{\prime}
\end{array}\right]
$$

Luckily, inverse of a 2×2 matrix is easy to compute. Since the addition and multiplication in our universe are defined under $\bmod q$, the matrix $\left[\begin{array}{cc}i & 1 \\ i^{\prime} & 1\end{array}\right]$ is invertible as long as the following condition is satisfied:

$$
i \neq i^{\prime} \bmod q
$$

It's easy to see that one such case when this is always true is when $i, i^{\prime} \in\{0,1,2,3, \cdots, q-1\}$. Let the value of c and d determined using the above matrix equation be c_{1} and d_{1}. Then,

$$
\operatorname{Pr}_{h_{c, d} \in \mathcal{H}}\left[h_{c, d}(i)=j \text { and } h_{c, d}\left(i^{\prime}\right)=j^{\prime}\right]=\operatorname{Pr}\left(c=c_{1} \text { and } d=d 1\right) .
$$

Since c and d are uniformly and independently sampled from $\{0,1,2, \cdots, q-1\}$.

$$
\begin{aligned}
\operatorname{Pr}_{h_{c, d} \in \mathcal{H}}\left[h_{c, d}(i)=j \text { and } h_{c, d}\left(i^{\prime}\right)=j^{\prime}\right] & =\operatorname{Pr}\left(c=c_{1}\right) \cdot \operatorname{Pr}(d=d 1) \\
& =\frac{1}{q} \cdot \frac{1}{q} \\
& =\frac{1}{q^{2}} .
\end{aligned}
$$

When $q=2$: We provide a direct proof for $q=2$ and $\{0,1\}$ values. For $\mathrm{x}=1$,

$$
\operatorname{Pr}_{c \in\{0,1\}}[c \cdot x \bmod 2=0]=\frac{1}{2} .
$$

For $x_{1} \neq x_{2} \in\{0,1\}$ and $y_{1}, y_{2} \in\{0,1\}$, We need to prove :

$$
\underset{c \in\{0,1\}, d \in\{0,1\}}{\operatorname{Pr}}\left[\left(c \cdot x_{1}+d\right) \bmod 2=y_{1} \text { and }\left(c \cdot x_{2}+d\right) \bmod 2=y_{2}\right]=\frac{1}{4}
$$

If we randomize over c then for any y we get

$$
\operatorname{Pr}_{c \in\{0,1\}}\left[c \cdot x_{1} \oplus c \cdot x_{2}=y\right]=P_{c \in\{0,1\}}\left[c \cdot\left(x_{1} \oplus x_{2}\right)=y\right]=\frac{1}{2} .
$$

Now, randomize over d

$$
\underset{c \in\{0,1\}, d \in\{0,1\}}{\operatorname{Pr}}\left[\left(c \cdot x_{1}+d\right) \bmod 2=y_{1} \text { and }\left(c \cdot x_{2}+d\right) \bmod 2=y_{2}\right]=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
$$

(b) Let Y_{1}, \ldots, Y_{n} be pairwise independent random variables. Prove that $\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[Y_{i}\right]$.

Solution: We know by definition of variance and covariance that

$$
\operatorname{Var}[x+y]=\operatorname{Var}[x]+\operatorname{Var}[y]+2 \cdot \operatorname{Cov}[x, y]
$$

Similarly, we see that

$$
\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[Y_{i}\right]+2 \cdot \sum_{i=1}^{n} \sum_{j>i} \operatorname{Cov}\left[Y_{i}, Y_{j}\right]
$$

If x and y are independent then $\operatorname{Cov}[x, y]=0$. Therefore,

$$
\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[Y_{i}\right]
$$

(c) Extra Credit. Let q be a prime, and let k be an integer with $q \geq k$. Consider the set \mathcal{H} of degree $k-1$ polynomials over \mathbb{F}_{q}. More precisely, let \mathcal{H} be the set of polynomials $h_{\vec{c}}$ defined by a vector \vec{c} of k coefficients $c_{0}, c_{1}, \ldots, c_{k-1} \in\{0,1, \ldots, q-1\}$ such that

$$
h_{\vec{c}}(x)=c_{k-1} x^{k-1}+c_{k-2} x^{k-2}+c_{1} x+c_{0} \bmod q .
$$

Prove that \mathcal{H} is a k-wise independent hash family. That is, prove that for all distinct $i_{1}, i_{2}, \ldots, i_{k}$ and all $j_{1}, j_{2}, \ldots, j_{k}$, we have

$$
\underset{\vec{c}}{\operatorname{Pr}}\left[h_{\vec{c}}\left(i_{1}\right)=j_{1} \text { and } h_{\vec{c}}\left(i_{2}\right)=j_{2} \text { and } \cdots \text { and } h_{\vec{c}}\left(i_{k}\right)=j_{k}\right]=\frac{1}{q^{k}},
$$

where the probability is over uniformly random $c_{0}, c_{1}, \ldots, c_{k-1} \in\{0,1, \ldots, q-1\}$.
Hint: Consider the $k \times k$ Vandermonde matrix, which is invertible.
Solution: Observe that proof for $k=2$ case is essentially the solution to part a. In general, we can write the k hash function evaluations in the matrix form as:

$$
\left[\begin{array}{ccccc}
1 & i_{1} & i_{1}{ }^{2} & \cdots & i_{1}{ }^{k-1} \\
1 & i_{2} & i_{2}{ }^{2} & \cdots & i_{2}{ }^{k-1} \\
1 & i_{3} & i_{3}{ }^{2} & \cdots & i_{3}{ }^{k-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & i_{1} & i_{1}{ }^{2} & \cdots & i_{1}{ }^{k-1}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{k-1}
\end{array}\right]=\left[\begin{array}{c}
j_{1} \\
j_{2} \\
j_{3} \\
\vdots \\
j_{k}
\end{array}\right]
$$

This is a square Vandermonde matrix which has a non-zero determinant and hence is invertible. Therefore, the coefficients $\left\{c_{0}, c_{1}, c_{2}, \cdots, c_{k-1}\right\}$ can be uniquely determined. Let \vec{c} determined using the above matrix equation be $\overrightarrow{c_{0}}$. Since all c_{i} s in \vec{c} are uniformly and independently sampled from $\{0,1,2, \cdots, q-1\}$,

$$
\operatorname{Pr}_{\vec{c}}\left[h_{\vec{c}}\left(i_{1}\right)=j_{1} \text { and } h_{\vec{c}}\left(i_{2}\right)=j_{2} \text { and } \cdots \text { and } h_{\vec{c}}\left(i_{k}\right)=j_{k}\right]=\operatorname{Pr}\left[\vec{c}=\overrightarrow{c_{0}}\right]=\frac{1}{q^{k}}
$$

Problem 3: Streaming Sampling

Consider the following algorithm for sampling a random element in a stream. You see $x_{1}, x_{2}, \ldots, x_{m}$ one at a time. For the first element x_{1}, store it as $s=x_{1}$, and initialize a counter $i=1$. Every time you see an new element x_{i+1}, increment the counter, and flip a biased coin that comes up heads with probability $1 /(i+1)$. If you get heads, then replace the stored element s with x_{i+1}.
(a) Prove that if you have seen m elements in the stream so far, then the probability that you have stored any given element is exactly $1 / m$. That is, show that $\operatorname{Pr}\left[s=x_{i}\right]=1 / m$ for all $i=1,2, \ldots, m$ after you have seen all m elements.
(b) For a parameter $k>1$, generalize the algorithm to sample k elements without replacement from the stream. As a hint, you can store the first k elements, and then replace one of the stored elements with a new element using a random process. Prove that for any subset $S \subseteq\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of size $|S|=k$, the algorithm outputs S with probability $1 /\binom{m}{k}$.

Solution: (a) We observe that $s=x_{j}$ if x_{j} is chosen when it is considered by the algorithm (which happens with probability $1 / j$), and none of x_{j+1}, \ldots, x_{m} are chosen to replace x_{j}. All the relevant events are independent and we can compute:

$$
\operatorname{Pr}\left[s=x_{j}\right]=1 / j \cdot \prod_{i>j}(1-1 / i)=1 / m .
$$

(b) Let's generalize the algorithm to sample k elements without replacement. We observe $x_{1}, x_{2}, \cdots, x_{m}$ one at a time. We store the first k elements as they come and then for every x_{t} $(t>k)$, we decide to choose it for inclusion in S with probability k / t, and if it is chosen then we choose a uniform element from S to be replaced by x_{t}.
The output of the algorithm is the set S. We now prove that algorithm outputs a random sample of size k without replacement via induction. The base case $m=k$ is true, since the set S is just $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ and the $\operatorname{Pr}\left[S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}\right]=1$. Let's assume that the statement holds for $t=m-1$. Therefore, after observing $m-1$ elements, the probability of a random subset $S \subseteq\left\{x_{1}, x_{2}, \ldots, x_{m-1}\right\}$ of size $|S|=k$ is given by $1 /\binom{m-1}{k}$.
Now for $t=m$, we divide all possible subsets of $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ in two cases:
(a) Case 1: When the subset does not contain x_{m}.

For this to happen, we need to discard x_{m} with probability $1-k / m$. Therefore, the probability of any random subset S of size k can be written as:

$$
\underset{m}{\operatorname{Pr}}[S]=(1-k / m) \cdot \operatorname{Pr}_{m-1}[S]=(1-k / m) \cdot \frac{1}{\binom{m-1}{k}}=\frac{1}{\binom{m}{k}} .
$$

(b) Case 2: When the subset contains x_{m}.

For this to happen, we decide to keep x_{m} with probability k / m and choose a random element with probability $1 / k$ in S to be replaced by x_{m}. Observe that, there are $m-k$ subsets of size k at $t=m-1$ stage which only differ from S by a single element which can give us S at $t=m$. Therefore, the probability of the subset S can be written as:

$$
\underset{m}{\operatorname{Pr}}[S]=(k / m) \cdot(1 / k) \cdot(m-1) \cdot \frac{1}{\binom{m-1}{k}}=\frac{1}{\binom{m}{k}} .
$$

