
Algorithms for Big Data Fall 2020

Homework 2 Solutions

Problem 1: Approximate Counting, Remix

In Lectures 4 and 5, we analyzed Morris’ algorithm, which approximated the number of updates n

by using the following estimator. Initialize a counter X to 0, and for each update, increment X

with probability 1/2X . Then, the algorithm output ñ = 2X − 1. To obtain good bounds on the

probability that |ñ−n| < εn, we considered Morris+ and Morris++ that eventually took the median

of many means, where each mean averaged many estimates. Consider a different algorithm, where

we still initialize X to 0, but we increment it with probability 1/(1 + a)X for some parameter a.

(a) Determine an estimator ñ as a function of X and a such that it is an unbiased estimator, that

is, E[ñ] = n after n updates.

(b) How small must a be so that our estimate ñ of n satisfies |ñ−n| < εn with at least 9/10 prob-

ability when we return the output of a single estimator (instead of averaging many estimators

as in class)?

(c) Derive a bound S on the space (in bits) as a function of n, ε, a so that this algorithm uses

at most S space with at least 9/10 probability after n increments (in addition to satisfying

|ñ− n| < εn with probability at least 9/10).

Solution: (a) Analogous to the original Morris algorithm, let’s try and calculate E[(1 + a)Xn+1 ] and see

if we can come up with an unbiased estimator for ñ.

E[(1 + a)Xn+1 ] =

∞∑
j=0

Pr(Xn = j) · E((1 + a)Xn |Xn = j)

=

∞∑
j=0

Pr(Xn = j) · ((1 + a)j(1− 1

(1 + a)j
) +

1

(1 + a)j
· (1 + a)j+1)

= E[(1 + a)Xn ] + a.

Observe that this is a recursive definition,

E[(1 + a)X0 ] = 1

E[(1 + a)X1 ] = E[(1 + a)X0 ] + 1 = a + 1

E[(1 + a)X2 ] = E[(1 + a)X1 ] + 1 = 2a + 1

This can be written generally as E[(1 + a)Xn ] = na + 1. Therefore,

ñ =
(1 + a)Xn − 1

a

is an unbiased estimator of n because

E[ñ] = E
[

(1 + a)Xn − 1

a

]
=

1

a
(E[(1 + a)Xn ]− 1) = n
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(b) We need to find a bound on a such that for a given ε,

Pr(|ñ− n| ≥ εn) ≤ 1

10
(1)

According to Chebyshev’s Inequality,

Pr(|ñ− n| ≥ εn) ≤ Var(ñ)

ε2n2

Now,

Var(ñ) =
1

a2
Var((1 + a)Xn − 1) =

1

a2
Var((1 + a)Xn). (2)

Observe,

Var((1 + a)Xn) = E[(1 + a)2Xn ]− (E[(1 + a)Xn ])2 (3)

Similar to the original Morris algorithm (a = 1), E[(1 + a)2Xn ] is quadratic.

To figure out the values of p, q and r, we can use polynomial interpolation, let’s assume that

E[(1 + a)2Xn ] = pn2 + qn + r.

We evaluate the expectation at three values, n ∈ {0, 1, 2}. This gives us three linear equations

in p, q and r that can be solved to get the value of the coefficients. Doing this we get,

p =
a3

2
+ a2 and q = 2a− a3

2
and r = 1.

(by setting a = 1, we get values for the original Morris algorithm, namely p = q = 3/2).

Overall, we have

Var[(1 + a)Xn ] = Θ(a3n2).

We can figure out the constants with some effort, but for the sake of brevity, let k be a constant

such that

Var[(1 + a)Xn ] ≤ ka3n2.

Using this in Eq. (2), we get,

Var(ñ) ≤ kan2

Therefore Inequality 1 holds if,

Var(ñ)

ε2n2
≤ 1

10
,

kan2

ε2n2
≤ 1

10
,

a ≤ ε2

k10
,

a = O(ε2).

(c) In this part, we need to find a bound S on log2(X) such that

Pr(log2(X) ≥ S) ≤ 1

10
(4)

Since, Pr(x > y) = Pr(ax > ay) if a > 1

Pr(log2(X) ≥ S) = Pr(X ≥ 2S) = Pr((1 + a)X ≥ (1 + a)2
S

)
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Using Markov’s Inequality,

Pr((1 + a)X ≥ (1 + a)2
S

) ≤ E[(1 + a)X ]

(1 + a)2S

Therefore, Inequality 4 holds if,

E[(1 + a)X ]

(1 + a)2S
≤ 1

10
,

na + 1 ≤ (1 + a)2
S

10
,

(1 + a)2
S

≥ 10(na + 1),

S ≥ log2 log1+a[10(na + 1)]

S = Ω(log log1+a(na))

In order to also satisfy the constraint in Part (b), a must be O(ε2).

Problem 2: Pairwise Independence

(a) Let q be a prime number. For integers c, d ∈ {0, 1, . . . , q − 1}, define the hash function hc,d as

hc,d(x) = cx + d mod q.

Let H be the set of all such hash functions, defined as

H =
{
hc,d | c, d ∈ {0, 1, . . . , q − 1}

}
.

Prove that H is a pairwise independent hash family. That is, prove that for any distinct i 6= i′

and any j, j′, we have that

Pr
hc,d∈H

[ hc,d(i) = j and hc,d(i′) = j′ ] =
1

q2
,

where hc,d ∈ H is chosen uniformly by choosing c, d at random in {0, 1, . . . , q − 1}.
Hint: Start with q = 2 and {0, 1} values; then, generalize to all prime q ≥ 2. For the general

case, you can use that cx + d = j has a unique solution in terms of x if c 6= 0.

Solution 1: For distinct i 6= i′ and any j, j′, we need to show that

Pr
hc,d∈H

[ hc,d(i) = j and hc,d(i′) = j′ ] =
1

q2
,

Observe that, c·i+d mod q = j and c·i′+d mod q = j′ can also be written in the matrix form as:[
i 1

i′ 1

] [
c

d

]
=

[
j

j′

]
where the addition and multiplication are under mod q. Therefore, c and d can be uniquely

determined if the matrix [
i 1

i′ 1

]
is invertible or non-singular as shown below:[

c

d

]
=

[
i 1

i′ 1

]−1 [
j

j′

]
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Luckily, inverse of a 2× 2 matrix is easy to compute. Since the addition and multiplication in

our universe are defined under mod q, the matrix

[
i 1

i′ 1

]
is invertible as long as the following

condition is satisfied:

i 6= i′ mod q.

It’s easy to see that one such case when this is always true is when i, i′ ∈ {0, 1, 2, 3, · · · , q− 1}.
Let the value of c and d determined using the above matrix equation be c1 and d1. Then,

Pr
hc,d∈H

[ hc,d(i) = j and hc,d(i′) = j′ ] = Pr(c = c1 and d = d1).

Since c and d are uniformly and independently sampled from {0, 1, 2, · · · , q − 1}.

Pr
hc,d∈H

[ hc,d(i) = j and hc,d(i′) = j′ ] = Pr(c = c1) · Pr(d = d1)

=
1

q
· 1

q

=
1

q2
.

When q = 2: We provide a direct proof for q = 2 and {0, 1} values. For x = 1,

Pr
c∈{0,1}

[c · x mod 2 = 0] =
1

2
.

For x1 6= x2 ∈ {0, 1} and y1, y2 ∈ {0, 1}, We need to prove :

Pr
c∈{0,1},d∈{0,1}

[(c · x1 + d) mod 2 = y1 and (c · x2 + d) mod 2 = y2] =
1

4
.

If we randomize over c then for any y we get

Pr
c∈{0,1}

[c · x1 ⊕ c · x2 = y] = Pc∈{0,1}[c · (x1 ⊕ x2) = y] =
1

2
.

Now, randomize over d

Pr
c∈{0,1},d∈{0,1}

[(c · x1 + d) mod 2 = y1 and (c · x2 + d) mod 2 = y2] =
1

2
· 1

2
=

1

4
.

(b) Let Y1, . . . , Yn be pairwise independent random variables. Prove that Var

[
n∑

i=1

Yi

]
=

n∑
i=1

Var[Yi].

Solution: We know by definition of variance and covariance that

Var[x + y] = Var[x] + Var[y] + 2 · Cov[x, y].

Similarly, we see that

Var

[
n∑

i=1

Yi

]
=

n∑
i=1

Var[Yi] + 2 ·
n∑

i=1

∑
j>i

Cov[Yi, Yj ].

If x and y are independent then Cov[x, y] = 0. Therefore,

Var

[
n∑

i=1

Yi

]
=

n∑
i=1

Var[Yi].
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(c) Extra Credit. Let q be a prime, and let k be an integer with q ≥ k. Consider the set H of

degree k − 1 polynomials over Fq. More precisely, let H be the set of polynomials h~c defined

by a vector ~c of k coefficients c0, c1, . . . , ck−1 ∈ {0, 1, . . . , q − 1} such that

h~c(x) = ck−1x
k−1 + ck−2x

k−2 + c1x + c0 mod q.

Prove that H is a k-wise independent hash family. That is, prove that for all distinct

i1, i2, . . . , ik and all j1, j2, . . . , jk, we have

Pr
~c

[ h~c(i1) = j1 and h~c(i2) = j2 and · · · and h~c(ik) = jk ] =
1

qk
,

where the probability is over uniformly random c0, c1, . . . , ck−1 ∈ {0, 1, . . . , q − 1}.
Hint: Consider the k × k Vandermonde matrix, which is invertible.

Solution: Observe that proof for k = 2 case is essentially the solution to part a. In general, we can write

the k hash function evaluations in the matrix form as:
1 i1 i1

2 · · · i1
k−1

1 i2 i2
2 · · · i2

k−1

1 i3 i3
2 · · · i3

k−1

...
...

...
. . .

...

1 i1 i1
2 · · · i1

k−1




c0
c1
c2
...

ck−1

 =


j1
j2
j3
...

jk


This is a square Vandermonde matrix which has a non-zero determinant and hence is invertible.

Therefore, the coefficients {c0, c1, c2, · · · , ck−1} can be uniquely determined. Let ~c determined using

the above matrix equation be ~c0. Since all cis in ~c are uniformly and independently sampled from

{0, 1, 2, · · · , q − 1},

Pr
~c

[ h~c(i1) = j1 and h~c(i2) = j2 and · · · and h~c(ik) = jk ] = Pr[~c = ~c0] =
1

qk

Problem 3: Streaming Sampling

Consider the following algorithm for sampling a random element in a stream. You see x1, x2, . . . , xm

one at a time. For the first element x1, store it as s = x1, and initialize a counter i = 1. Every time

you see an new element xi+1, increment the counter, and flip a biased coin that comes up heads

with probability 1/(i + 1). If you get heads, then replace the stored element s with xi+1.

(a) Prove that if you have seen m elements in the stream so far, then the probability that you

have stored any given element is exactly 1/m. That is, show that Pr[s = xi] = 1/m for all

i = 1, 2, . . . ,m after you have seen all m elements.

(b) For a parameter k > 1, generalize the algorithm to sample k elements without replacement

from the stream. As a hint, you can store the first k elements, and then replace one of

the stored elements with a new element using a random process. Prove that for any subset

S ⊆ {x1, x2, . . . , xm} of size |S| = k, the algorithm outputs S with probability 1/
(
m
k

)
.

Solution: (a) We observe that s = xj if xj is chosen when it is considered by the algorithm (which

happens with probability 1/j), and none of xj+1, ..., xm are chosen to replace xj . All the

relevant events are independent and we can compute:

Pr[s = xj ] = 1/j ·
∏
i>j

(1− 1/i) = 1/m.
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(b) Let’s generalize the algorithm to sample k elements without replacement. We observe

x1, x2, · · · , xm one at a time. We store the first k elements as they come and then for every xt

(t > k), we decide to choose it for inclusion in S with probability k/t, and if it is chosen then

we choose a uniform element from S to be replaced by xt.

The output of the algorithm is the set S. We now prove that algorithm outputs a random

sample of size k without replacement via induction. The base case m = k is true, since the

set S is just {x1, x2, · · · , xk} and the Pr[S = {x1, x2, · · · , xk}] = 1. Let’s assume that the

statement holds for t = m − 1. Therefore, after observing m − 1 elements, the probability of

a random subset S ⊆ {x1, x2, . . . , xm−1} of size |S| = k is given by 1/
(
m−1
k

)
.

Now for t = m, we divide all possible subsets of {x1, x2, · · · , xm} in two cases:

(a) Case 1: When the subset does not contain xm.

For this to happen, we need to discard xm with probability 1 − k/m. Therefore, the

probability of any random subset S of size k can be written as:

Pr
m

[S] = (1− k/m) · Pr
m−1

[S] = (1− k/m) · 1(
m−1
k

) =
1(
m
k

) .
(b) Case 2: When the subset contains xm.

For this to happen, we decide to keep xm with probability k/m and choose a random

element with probability 1/k in S to be replaced by xm. Observe that, there are m − k

subsets of size k at t = m − 1 stage which only differ from S by a single element which

can give us S at t = m. Therefore, the probability of the subset S can be written as:

Pr
m

[S] = (k/m) · (1/k) · (m− 1) · 1(
m−1
k

) =
1(
m
k

) .
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