Algorithms for Big Data Fall 2020

Homework 2 Solutions

Problem 1: Approximate Counting, Remix

In Lectures 4 and 5, we analyzed Morris’ algorithm, which approximated the number of updates n
by using the following estimator. Initialize a counter X to 0, and for each update, increment X
with probability 1/2%. Then, the algorithm output 7 = 2% — 1. To obtain good bounds on the
probability that [ —n| < en, we considered Morris+ and Morris++ that eventually took the median
of many means, where each mean averaged many estimates. Consider a different algorithm, where
we still initialize X to 0, but we increment it with probability 1/(1 + a)X for some parameter a.

(a) Determine an estimator 72 as a function of X and a such that it is an unbiased estimator, that
is, E[n] = n after n updates.

(b) How small must a be so that our estimate 7 of n satisfies | —n| < en with at least 9/10 prob-
ability when we return the output of a single estimator (instead of averaging many estimators
as in class)?

(¢) Derive a bound S on the space (in bits) as a function of n,e,a so that this algorithm uses
at most S space with at least 9/10 probability after n increments (in addition to satisfying
| — n| < en with probability at least 9/10).

Solution: (a) Analogous to the original Morris algorithm, let’s try and calculate E[(1 + a)*~+!] and see
if we can come up with an unbiased estimator for 7.
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Observe that this is a recursive definition,

E[(1+a)*] =1
E[(1+a)* ] =E[1+a)*]+1=a+1
E[(1+a)*2] =E[(1+a)*]+1=2a+1

This can be written generally as E[(1 + a)*"] = na + 1. Therefore,
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(b) We need to find a bound on a such that for a given ¢,
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According to Chebyshev’s Inequality,
_ Var(n)
Pr(jn —n| >en) < 2,2
Now,
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Var(n) = o Var((1 4 a)*" — 1) = o Var((1 + a)*"). (2)

Observe,
Var((1+a)*) = E[(1 +a)**] — (E[(1 + a)*"])? (3)

Similar to the original Morris algorithm (a = 1), E[(1 + a)*¥"] is quadratic.

To figure out the values of p, ¢ and 7, we can use polynomial interpolation, let’s assume that
E[(1 + a)?*"] = pn® 4+ qn + .
We evaluate the expectation at three values, n € {0,1,2}. This gives us three linear equations
in p, ¢ and r that can be solved to get the value of the coefficients. Doing this we get,
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p:%+a2 and qz?a—% and r=1.

(by setting a = 1, we get values for the original Morris algorithm, namely p = ¢ = 3/2).
Overall, we have
Var[(1+a)X] = O(a®n?).

We can figure out the constants with some effort, but for the sake of brevity, let k be a constant
such that
Var[(1 + a)X] < ka®n?.

Using this in Eq. (2), we get,
Var() < kan?

Therefore Inequality 1 holds if,

(¢) In this part, we need to find a bound S on log,(X) such that
1
Pr(log,(X) 2 8) < - (1)
Since, Pr(z > y) = Pr(a® > a¥) if a > 1

Pr(logy(X) > S) = Pr(X > 2%) = Pr((1 + a)¥ > (1 +a)?)



Using Markov’s Inequality,

Pr((1 +a)* > (1+a)%)
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Therefore, Inequality 4 holds if,

(1+ a)Zs > 10(na + 1),
S = logy log, 1, [10(na + 1)]
5 = Q(loglog, ., (na))

In order to also satisfy the constraint in Part (b), a must be O(g?).

Problem 2: Pairwise Independence

(a) Let ¢ be a prime number. For integers ¢,d € {0,1,...,¢q — 1}, define the hash function h. 4 as

Solution 1:

he,d(z) = cx + d mod q.
Let ‘H be the set of all such hash functions, defined as
H= {hqd | e,d € {O,l,...,q—l}}.
Prove that H is a pairwise independent hash family. That is, prove that for any distinct 7 # 4’

and any 7, j’, we have that
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théH[ hea(i) =j and heq(i') =5 | = et

where h. q € H is chosen uniformly by choosing ¢, d at random in {0,1,...,q — 1}.
Hint: Start with ¢ = 2 and {0,1} values; then, generalize to all prime q > 2. For the general
case, you can use that cx +d = j has a unique solution in terms of x if ¢ # 0.

For distinct 7 # 7’ and any j,j’, we need to show that
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Observe that, c-i+d mod ¢ = j and c-¢'+d mod ¢ = j’ can also be written in the matrix form as:

A=

where the addition and multiplication are under mod q. Therefore, ¢ and d can be uniquely
determined if the matrix i .
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is invertible or non-singular as shown below:
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Luckily, inverse of a 2 x 2 matrix is easy to compute. Since the addition and multiplication in

1
our universe are defined under mod ¢, the matrix [;’ ] is invertible as long as the following

1
condition is satisfied:

i # 4 mod q.

It’s easy to see that one such case when this is always true is when 4,7’ € {0,1,2,3,--- ,¢—1}.
Let the value of ¢ and d determined using the above matrix equation be ¢; and d;. Then,

Pr [ hea(i) =7 and heq(i') =7 ] = Pr(c = ¢; and d = d1).
hCYdGH

Since ¢ and d are uniformly and independently sampled from {0,1,2,--- ,¢ — 1}.

Pr [hea(i) =jand heq(i') = j' ] =Pr(c=c¢1) - Pr(d = dl)
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When ¢ =2: We provide a direct proof for ¢ = 2 and {0, 1} values. For x = 1,

Pr [c-xm0d2:0]:1.
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For x1 # x5 € {0,1} and w;,y2 € {0,1}, We need to prove :
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If we randomize over ¢ then for any y we get
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(b) Let Y7,...,Y, be pairwise independent random variables. Prove that Var

= ZVar[YZ-}.

Solution: We know by definition of variance and covariance that
Var[z + y] = Var[z] + Var[y] 4+ 2 - Cov]z, y].

Similarly, we see that
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If 2 and y are independent then Cov[z,y] = 0. Therefore,

Sy,
i=1

Var

= ZVar[Yi].



(¢) Extra Credit. Let ¢ be a prime, and let k be an integer with ¢ > k. Consider the set H of
degree k — 1 polynomials over F,. More precisely, let H be the set of polynomials he defined
by a vector ¢ of k coefficients cg, c1,...,cx—1 € {0,1,...,¢ — 1} such that

he(z) = Cro12" 7+ ep_0a* % + 12 + ¢ mod ¢.

Prove that H is a k-wise independent hash family. That is, prove that for all distinct

i1,%2,...,1% and all jq1,jo, ..., jk, we have
. . . . ) . 1
Pr[ he(i1) = j1 and hz(iz) = jo and --- and he(iy) = ji | = ra
C
where the probability is over uniformly random ¢, c1,...,ck—1 € {0,1,...,¢ — 1}.

Hint: Consider the k x k Vandermonde matriz, which is invertible.

Solution: Observe that proof for k = 2 case is essentially the solution to part a. In general, we can write
the k hash function evaluations in the matrix form as:
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This is a square Vandermonde matrix which has a non-zero determinant and hence is invertible.
Therefore, the coefficients {cg, c1,co,- - ,cx—1} can be uniquely determined. Let ¢ determined using
the above matrix equation be ¢j. Since all ¢;s in ¢ are uniformly and independently sampled from

{03172a"' aq_1}7

. . . ) . , L 1
P;r[ hz(i1) = j1 and hz(iz) = jo and --- and hz(ix) = ji | = Pr[¢=¢é)] = 3
Problem 3: Streaming Sampling
Consider the following algorithm for sampling a random element in a stream. You see 1, X2, ..., ZTm

one at a time. For the first element x1, store it as s = x1, and initialize a counter i = 1. Every time
you see an new element x;;1, increment the counter, and flip a biased coin that comes up heads
with probability 1/(i 4+ 1). If you get heads, then replace the stored element s with z;.

(a) Prove that if you have seen m elements in the stream so far, then the probability that you
have stored any given element is exactly 1/m. That is, show that Pr[s = x;] = 1/m for all
1=1,2,...,m after you have seen all m elements.

(b) For a parameter k > 1, generalize the algorithm to sample k elements without replacement
from the stream. As a hint, you can store the first k£ elements, and then replace one of
the stored elements with a new element using a random process. Prove that for any subset
S CH{x1,x2,...,xm} of size |S| = k, the algorithm outputs S with probability 1/(7:)

Solution: (a) We observe that s = x; if x; is chosen when it is considered by the algorithm (which
happens with probability 1/j), and none of xji1, ...,z are chosen to replace x; . All the
relevant events are independent and we can compute:

Prls = ;] = 1/5- [[(1 = 1/i) = 1/m.

i>7



(b) Let’s generalize the algorithm to sample k elements without replacement. We observe
T1,%2, - , Ty one at a time. We store the first k elements as they come and then for every x;
(t > k), we decide to choose it for inclusion in S with probability k/¢, and if it is chosen then
we choose a uniform element from S to be replaced by ;.

The output of the algorithm is the set S. We now prove that algorithm outputs a random
sample of size k without replacement via induction. The base case m = k is true, since the
set S is just {x1,22, -, 2z} and the Pr[S = {x1, 22, -+ ,2x}] = 1. Let’s assume that the
statement holds for ¢t = m — 1. Therefore, after observing m — 1 elements, the probability of
a random subset S C {x1,z2,...,2m_1} of size |S| =k is given by 1/(mk_1).

Now for ¢ = m, we divide all possible subsets of {z1, 23, - , 2, } in two cases:

(a) Case 1: When the subset does not contain 2.
For this to happen, we need to discard z,, with probability 1 — k/m. Therefore, the
probability of any random subset S of size k can be written as:
1 1
Pr[S]|=(1—-k/m) - Prl[S] =(1-k/m)- = .
m m—
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(b) Case 2: When the subset contains .
For this to happen, we decide to keep x,, with probability k/m and choose a random
element with probability 1/k in S to be replaced by x,,. Observe that, there are m — k
subsets of size k at t = m — 1 stage which only differ from S by a single element which
can give us S at t = m. Therefore, the probability of the subset S can be written as:
1 1
Pr{S] = (k/m) - (1/k) - (m — 1) L1pe = oo
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