Homework 2 Solutions

Problem 1: Approximate Counting, Remix

In Lectures 4 and 5, we analyzed Morris' algorithm, which approximated the number of updates n by using the following estimator. Initialize a counter X to 0, and for each update, increment X with probability $1/2^X$. Then, the algorithm output $\tilde{n} = 2^X - 1$. To obtain good bounds on the probability that $|\tilde{n} - n| < \varepsilon n$, we considered Morris+ and Morris++ that eventually took the median of many means, where each mean averaged many estimates. Consider a different algorithm, where we still initialize X to 0, but we increment it with probability $1/(1 + a)^X$ for some parameter a.

- (a) Determine an estimator \tilde{n} as a function of X and a such that it is an unbiased estimator, that is, $\mathbb{E}[\tilde{n}] = n$ after n updates.
- (b) How small must a be so that our estimate \tilde{n} of n satisfies $|\tilde{n} n| < \varepsilon n$ with at least 9/10 probability when we return the output of a single estimator (instead of averaging many estimators as in class)?
- (c) Derive a bound S on the space (in bits) as a function of n, ε, a so that this algorithm uses at most S space with at least 9/10 probability after n increments (in addition to satisfying $|\tilde{n} - n| < \varepsilon n$ with probability at least 9/10).
- **Solution:** (a) Analogous to the original Morris algorithm, let's try and calculate $\mathbb{E}[(1+a)^{X_{n+1}}]$ and see if we can come up with an unbiased estimator for \tilde{n} .

$$\mathbb{E}[(1+a)^{X_{n+1}}] = \sum_{j=0}^{\infty} \Pr(X_n = j) \cdot \mathbb{E}((1+a)^{X_n} | X_n = j)$$

= $\sum_{j=0}^{\infty} \Pr(X_n = j) \cdot ((1+a)^j (1 - \frac{1}{(1+a)^j}) + \frac{1}{(1+a)^j} \cdot (1+a)^{j+1})$
= $\mathbb{E}[(1+a)^{X_n}] + a.$

Observe that this is a recursive definition,

$$\mathbb{E}[(1+a)^{X_0}] = 1$$

$$\mathbb{E}[(1+a)^{X_1}] = \mathbb{E}[(1+a)^{X_0}] + 1 = a+1$$

$$\mathbb{E}[(1+a)^{X_2}] = \mathbb{E}[(1+a)^{X_1}] + 1 = 2a+1$$

This can be written generally as $\mathbb{E}[(1+a)^{X_n}] = na+1$. Therefore,

$$\tilde{n} = \frac{(1+a)^{X_n} - 1}{a}$$

is an unbiased estimator of n because

$$\mathbb{E}[\tilde{n}] = \mathbb{E}\left[\frac{(1+a)^{X_n} - 1}{a}\right] = \frac{1}{a}(\mathbb{E}[(1+a)^{X_n}] - 1) = n$$

(b) We need to find a bound on a such that for a given ε ,

$$\Pr(|\tilde{n} - n| \ge \varepsilon n) \le \frac{1}{10} \tag{1}$$

According to Chebyshev's Inequality,

$$\Pr(|\tilde{n} - n| \ge \varepsilon n) \le \frac{\operatorname{Var}(\tilde{n})}{\varepsilon^2 n^2}$$

Now,

$$\operatorname{Var}(\tilde{n}) = \frac{1}{a^2} \operatorname{Var}((1+a)^{X_n} - 1) = \frac{1}{a^2} \operatorname{Var}((1+a)^{X_n}).$$
(2)

Observe,

$$\operatorname{Var}((1+a)^{X_n}) = \mathbb{E}[(1+a)^{2X_n}] - (\mathbb{E}[(1+a)^{X_n}])^2$$
(3)

Similar to the original Morris algorithm (a = 1), $\mathbb{E}[(1 + a)^{2X_n}]$ is quadratic. To figure out the values of p, q and r, we can use polynomial interpolation, let's assume that

$$\mathbb{E}[(1+a)^{2X_n}] = pn^2 + qn + r$$

We evaluate the expectation at three values, $n \in \{0, 1, 2\}$. This gives us three linear equations in p, q and r that can be solved to get the value of the coefficients. Doing this we get,

$$p = \frac{a^3}{2} + a^2$$
 and $q = 2a - \frac{a^3}{2}$ and $r = 1$.

(by setting a = 1, we get values for the original Morris algorithm, namely p = q = 3/2). Overall, we have

$$\operatorname{Var}[(1+a)_n^X] = \Theta(a^3n^2)$$

We can figure out the constants with some effort, but for the sake of brevity, let k be a constant such that

$$\operatorname{Var}[(1+a)_n^X] \le ka^3n^2.$$

Using this in Eq. (2), we get,

$$\operatorname{Var}(\tilde{n}) \le kan^2$$

Therefore Inequality 1 holds if,

$$\begin{aligned} \frac{\operatorname{Var}(\tilde{n})}{\varepsilon^2 n^2} &\leq \frac{1}{10}, \\ \frac{kan^2}{\varepsilon^2 n^2} &\leq \frac{1}{10}, \\ a &\leq \frac{\varepsilon^2}{k10}, \\ a &= O(\varepsilon^2). \end{aligned}$$

(c) In this part, we need to find a bound S on $\log_2(X)$ such that

$$\Pr(\log_2(X) \ge S) \le \frac{1}{10} \tag{4}$$

Since, $\Pr(x > y) = \Pr(a^x > a^y)$ if a > 1

$$\Pr(\log_2(X) \ge S) = \Pr(X \ge 2^S) = \Pr((1+a)^X \ge (1+a)^{2^S})$$

Using Markov's Inequality,

$$\Pr((1+a)^X \ge (1+a)^{2^S}) \le \frac{\mathbb{E}[(1+a)^X]}{(1+a)^{2^S}}$$

Therefore, Inequality 4 holds if,

$$\frac{\mathbb{E}[(1+a)^{X}]}{(1+a)^{2^{S}}} \le \frac{1}{10},$$

$$na+1 \le \frac{(1+a)^{2^{S}}}{10},$$

$$(1+a)^{2^{S}} \ge 10(na+1),$$

$$S \ge \log_{2}\log_{1+a}[10(na+1)]$$

$$S = \Omega(\log\log_{1+a}(na))$$

In order to also satisfy the constraint in Part (b), a must be $O(\varepsilon^2)$.

Problem 2: Pairwise Independence

(a) Let q be a prime number. For integers $c, d \in \{0, 1, \dots, q-1\}$, define the hash function $h_{c,d}$ as

$$h_{c,d}(x) = cx + d \mod q.$$

Let \mathcal{H} be the set of all such hash functions, defined as

$$\mathcal{H} = \left\{ h_{c,d} \mid c, d \in \{0, 1, \dots, q-1\} \right\}$$

Prove that \mathcal{H} is a pairwise independent hash family. That is, prove that for any distinct $i \neq i'$ and any j, j', we have that

$$\Pr_{h_{c,d} \in \mathcal{H}}[h_{c,d}(i) = j \text{ and } h_{c,d}(i') = j'] = \frac{1}{q^2},$$

where $h_{c,d} \in \mathcal{H}$ is chosen uniformly by choosing c, d at random in $\{0, 1, \ldots, q-1\}$. Hint: Start with q = 2 and $\{0, 1\}$ values; then, generalize to all prime $q \ge 2$. For the general case, you can use that cx + d = j has a unique solution in terms of x if $c \ne 0$.

Solution 1: For distinct $i \neq i'$ and any j, j', we need to show that

$$\Pr_{h_{c,d} \in \mathcal{H}}[h_{c,d}(i) = j \text{ and } h_{c,d}(i') = j'] = \frac{1}{q^2},$$

Observe that, $c \cdot i + d \mod q = j$ and $c \cdot i' + d \mod q = j'$ can also be written in the matrix form as:

$$\begin{bmatrix} i & 1 \\ i' & 1 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} j \\ j' \end{bmatrix}$$

where the addition and multiplication are under mod q. Therefore, c and d can be uniquely determined if the matrix

$$\begin{bmatrix} i & 1 \\ i' & 1 \end{bmatrix}$$

is invertible or non-singular as shown below:

$$\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} i & 1 \\ i' & 1 \end{bmatrix}^{-1} \begin{bmatrix} j \\ j' \end{bmatrix}$$

Luckily, inverse of a 2×2 matrix is easy to compute. Since the addition and multiplication in our universe are defined under mod q, the matrix $\begin{bmatrix} i & 1 \\ i' & 1 \end{bmatrix}$ is invertible as long as the following condition is satisfied:

$$i \neq i' \mod q$$
.

It's easy to see that one such case when this is always true is when $i, i' \in \{0, 1, 2, 3, \dots, q-1\}$. Let the value of c and d determined using the above matrix equation be c_1 and d_1 . Then,

$$\Pr_{h_{c,d}\in\mathcal{H}}[h_{c,d}(i)=j \text{ and } h_{c,d}(i')=j'] = \Pr(c=c_1 \text{ and } d=d1).$$

Since c and d are uniformly and independently sampled from $\{0, 1, 2, \dots, q-1\}$.

$$\Pr_{h_{c,d} \in \mathcal{H}} [h_{c,d}(i) = j \text{ and } h_{c,d}(i') = j'] = \Pr(c = c_1) \cdot \Pr(d = d1)$$
$$= \frac{1}{q} \cdot \frac{1}{q}$$
$$= \frac{1}{q^2}.$$

When q = 2: We provide a direct proof for q = 2 and $\{0, 1\}$ values. For x = 1,

$$\Pr_{c \in \{0,1\}} [c \cdot x \mod 2 = 0] = \frac{1}{2}.$$

For $x_1 \neq x_2 \in \{0,1\}$ and $y_1, y_2 \in \{0,1\}$, We need to prove :

$$\Pr_{c \in \{0,1\}, d \in \{0,1\}} \left[(c \cdot x_1 + d) \mod 2 = y_1 \text{ and } (c \cdot x_2 + d) \mod 2 = y_2 \right] = \frac{1}{4}$$

If we randomize over c then for any y we get

$$\Pr_{c \in \{0,1\}} [c \cdot x_1 \oplus c \cdot x_2 = y] = P_{c \in \{0,1\}} [c \cdot (x_1 \oplus x_2) = y] = \frac{1}{2}$$

Now, randomize over d

$$\Pr_{c \in \{0,1\}, d \in \{0,1\}} \left[(c \cdot x_1 + d) \mod 2 = y_1 \text{ and } (c \cdot x_2 + d) \mod 2 = y_2 \right] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

(b) Let Y_1, \ldots, Y_n be pairwise independent random variables. Prove that $\operatorname{Var}\left[\sum_{i=1}^n Y_i\right] = \sum_{i=1}^n \operatorname{Var}[Y_i]$.

Solution: We know by definition of variance and covariance that

$$\operatorname{Var}[x+y] = \operatorname{Var}[x] + \operatorname{Var}[y] + 2 \cdot \operatorname{Cov}[x,y].$$

Similarly, we see that

$$\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}[Y_{i}] + 2 \cdot \sum_{i=1}^{n} \sum_{j>i} \operatorname{Cov}[Y_{i}, Y_{j}].$$

If x and y are independent then Cov[x, y] = 0. Therefore,

$$\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right] = \sum_{i=1}^{n} \operatorname{Var}[Y_{i}].$$

(c) **Extra Credit.** Let q be a prime, and let k be an integer with $q \ge k$. Consider the set \mathcal{H} of degree k-1 polynomials over \mathbb{F}_q . More precisely, let \mathcal{H} be the set of polynomials $h_{\vec{c}}$ defined by a vector \vec{c} of k coefficients $c_0, c_1, \ldots, c_{k-1} \in \{0, 1, \ldots, q-1\}$ such that

$$h_{\vec{c}}(x) = c_{k-1}x^{k-1} + c_{k-2}x^{k-2} + c_1x + c_0 \mod q.$$

Prove that \mathcal{H} is a k-wise independent hash family. That is, prove that for all distinct i_1, i_2, \ldots, i_k and all j_1, j_2, \ldots, j_k , we have

$$\Pr_{\vec{c}}[h_{\vec{c}}(i_1) = j_1 \text{ and } h_{\vec{c}}(i_2) = j_2 \text{ and } \cdots \text{ and } h_{\vec{c}}(i_k) = j_k] = \frac{1}{q^k},$$

where the probability is over uniformly random $c_0, c_1, \ldots, c_{k-1} \in \{0, 1, \ldots, q-1\}$. Hint: Consider the $k \times k$ Vandermonde matrix, which is invertible.

Solution: Observe that proof for k = 2 case is essentially the solution to part a. In general, we can write the k hash function evaluations in the matrix form as:

Γ1	i_1	$i_1{}^2$		i_1^{k-1}	$\begin{bmatrix} c_0 \end{bmatrix}$		$\lceil j_1 \rceil$
1	i_2	$i_2^{\ 2}$		i_2^{k-1}	c_1		j_2
1	i_3	$i_3{}^2$		i_3^{k-1}	c_2	=	j_3
:	:	÷	·	:			:
$\lfloor 1$	i_1	$i_1^{\ 2}$		i_1^{k-1}	$\lfloor c_{k-1} \rfloor$		j_k

This is a square Vandermonde matrix which has a non-zero determinant and hence is invertible. Therefore, the coefficients $\{c_0, c_1, c_2, \dots, c_{k-1}\}$ can be uniquely determined. Let \vec{c} determined using the above matrix equation be $\vec{c_0}$. Since all c_i s in \vec{c} are uniformly and independently sampled from $\{0, 1, 2, \dots, q-1\}$,

$$\Pr_{\vec{c}}[h_{\vec{c}}(i_1) = j_1 \text{ and } h_{\vec{c}}(i_2) = j_2 \text{ and } \cdots \text{ and } h_{\vec{c}}(i_k) = j_k] = \Pr[\vec{c} = \vec{c_0}] = \frac{1}{q^k}$$

Problem 3: Streaming Sampling

Consider the following algorithm for sampling a random element in a stream. You see x_1, x_2, \ldots, x_m one at a time. For the first element x_1 , store it as $s = x_1$, and initialize a counter i = 1. Every time you see an new element x_{i+1} , increment the counter, and flip a biased coin that comes up heads with probability 1/(i+1). If you get heads, then replace the stored element s with x_{i+1} .

- (a) Prove that if you have seen m elements in the stream so far, then the probability that you have stored any given element is exactly 1/m. That is, show that $\Pr[s = x_i] = 1/m$ for all i = 1, 2, ..., m after you have seen all m elements.
- (b) For a parameter k > 1, generalize the algorithm to sample k elements without replacement from the stream. As a hint, you can store the first k elements, and then replace one of the stored elements with a new element using a random process. Prove that for any subset $S \subseteq \{x_1, x_2, \ldots, x_m\}$ of size |S| = k, the algorithm outputs S with probability $1/{\binom{m}{k}}$.
- **Solution:** (a) We observe that $s = x_j$ if x_j is chosen when it is considered by the algorithm (which happens with probability 1/j), and none of $x_{j+1}, ..., x_m$ are chosen to replace x_j . All the relevant events are independent and we can compute:

$$\Pr[s = x_j] = 1/j \cdot \prod_{i>j} (1 - 1/i) = 1/m.$$

(b) Let's generalize the algorithm to sample k elements without replacement. We observe x_1, x_2, \dots, x_m one at a time. We store the first k elements as they come and then for every x_t (t > k), we decide to choose it for inclusion in S with probability k/t, and if it is chosen then we choose a uniform element from S to be replaced by x_t .

The output of the algorithm is the set S. We now prove that algorithm outputs a random sample of size k without replacement via induction. The base case m = k is true, since the set S is just $\{x_1, x_2, \dots, x_k\}$ and the $\Pr[S = \{x_1, x_2, \dots, x_k\}] = 1$. Let's assume that the statement holds for t = m - 1. Therefore, after observing m - 1 elements, the probability of a random subset $S \subseteq \{x_1, x_2, \dots, x_{m-1}\}$ of size |S| = k is given by $1/\binom{m-1}{k}$.

Now for t = m, we divide all possible subsets of $\{x_1, x_2, \cdots, x_m\}$ in two cases:

(a) Case 1: When the subset does not contain x_m . For this to happen, we need to discard x_m with probability 1 - k/m. Therefore, the probability of any random subset S of size k can be written as:

$$\Pr_{m}[S] = (1 - k/m) \cdot \Pr_{m-1}[S] = (1 - k/m) \cdot \frac{1}{\binom{m-1}{k}} = \frac{1}{\binom{m}{k}}.$$

(b) Case 2: When the subset contains x_m .

For this to happen, we decide to keep x_m with probability k/m and choose a random element with probability 1/k in S to be replaced by x_m . Observe that, there are m - k subsets of size k at t = m - 1 stage which only differ from S by a single element which can give us S at t = m. Therefore, the probability of the subset S can be written as:

$$\Pr_{m}[S] = (k/m) \cdot (1/k) \cdot (m-1) \cdot \frac{1}{\binom{m-1}{k}} = \frac{1}{\binom{m}{k}}.$$