
Algorithms for Big Data Fall 2020

Homework 2

Due: Friday 10/16/20, 5pm PT

• Solving 2 of the following 3 problems will lead to full credit. You may attempt all three

problems, but the grading will be based on the 2 problems with the highest scores.

• You may work in groups of size 1-3. If you do, please hand-in a single assignment with

everyone’s names on it. It is strongly encouraged to type up the solutions in Latex.

• If the question asks to prove something, you must write out a formal mathematical proof.

• If the question involves analyzing an algorithm, you must formally explain the time and/or

space usage, along with the approximation guarantees (when applicable).

• When you are asked to prove a bound, it suffices to prove it up to multiplicative constants,

i.e., using O(·), Θ(·), or Ω(·) notation. No need to optimize (multiplicative) constants!

• You may use other resources, but you must cite them. If you use any external sources, you

still must provide a complete and self-contained proof/result for the homework solution.

Problem 1: Approximate Counting, Remix

In Lectures 4 and 5, we analyzed Morris’ algorithm, which approximated the number of updates n

by using the following estimator. Initialize a counter X to 0, and for each update, increment X

with probability 1/2X . Then, the algorithm output ñ = 2X − 1. To obtain good bounds on the

probability that |ñ−n| < εn, we considered Morris+ and Morris++ that eventually took the median

of many means, where each mean averaged many estimates. Consider a different algorithm, where

we still initialize X to 0, but we increment it with probability 1/(1 + a)X for some parameter a.

(a) Determine an estimator ñ as a function of X and a such that it is an unbiased estimator, that

is, E[ñ] = n after n updates.

(b) How small must a be so that our estimate ñ of n satisfies |ñ−n| < εn with at least 9/10 prob-

ability when we return the output of a single estimator (instead of averaging many estimators

as in class)?

(c) Derive a bound S on the space (in bits) as a function of n, ε, a so that this algorithm uses

at most S space with at least 9/10 probability after n increments (in addition to satisfying

|ñ− n| < εn with probability at least 9/10).

Problem 2: Pairwise Independence and Hashing

(a) Let q be a prime number. For integers c, d ∈ {0, 1, . . . , q − 1}, define the hash function hc,d as

hc,d(x) = cx + d mod q.

1

Let H be the set of all such hash functions, defined as

H =
{
hc,d | c, d ∈ {0, 1, . . . , q − 1}

}
.

Prove that H is a pairwise independent hash family. That is, prove that for any distinct i 6= i′

and any j, j′, we have that

Pr
hc,d∈H

[hc,d(i) = j and hc,d(i′) = j′] =
1

q2
,

where hc,d ∈ H is chosen uniformly by choosing c, d at random in {0, 1, . . . , q − 1}.
Hint: Start with q = 2 and {0, 1} values; then, generalize to all prime q ≥ 2. For the general

case, you can use that cx + d = j has a unique solution in terms of x if c 6= 0.

(b) Let Y1, . . . , Yn be pairwise independent random variables. Prove that

Var

[
n∑

i=1

Yi

]
=

n∑
i=1

Var[Yi].

(c) Extra Credit. Let q be a prime, and let k be an integer with q ≥ k. Consider the set H of

degree k − 1 polynomials over Fq. More precisely, let H be the set of polynomials h~c defined

by a vector ~c of k coefficients c0, c1, . . . , ck−1 ∈ {0, 1, . . . , q − 1} such that

h~c(x) = ck−1x
k−1 + ck−2x

k−2 + c1x + c0 mod q.

Prove that H is a k-wise independent hash family. That is, prove that for all distinct

i1, i2, . . . , ik and all j1, j2, . . . , jk, we have

Pr
~c

[h~c(i1) = j1 and h~c(i2) = j2 and · · · and h~c(ik) = jk] =
1

qk
,

where the probability is over uniformly random c0, c1, . . . , ck−1 ∈ {0, 1, . . . , q − 1}.
Hint: Consider the k × k Vandermonde matrix, which is invertible.

Problem 3: Streaming Sampling

Consider the following algorithm for sampling a random element in a stream. You see x1, x2, . . . , xm

one at a time. For the first element x1, store it as s = x1, and initialize a counter i = 1. Every time

you see an new element xi+1, increment the counter, and flip a biased coin that comes up heads

with probability 1/(i + 1). If you get heads, then replace the stored element s with xi+1.

(a) Prove that if you have seen m elements in the stream so far, then the probability that you

have stored any given element is exactly 1/m. That is, show that Pr[s = xi] = 1/m for all

i = 1, 2, . . . ,m after you have seen all m elements.

(b) For a parameter k > 1, generalize the algorithm to sample k elements without replacement

from the stream. As a hint, you can store the first k elements, and then replace one of

the stored elements with a new element using a random process. Prove that for any subset

S ⊆ {x1, x2, . . . , xm} of size |S| = k, the algorithm outputs S with probability 1/
(
m
k

)
.

2

