Homework 2

Due: Friday 10/16/20, 5pm PT

- Solving 2 of the following 3 problems will lead to full credit. You may attempt all three problems, but the grading will be based on the 2 problems with the highest scores.
- You may work in groups of size 1-3. If you do, please hand-in a single assignment with everyone's names on it. It is strongly encouraged to type up the solutions in Latex.
- If the question asks to prove something, you must write out a formal mathematical proof.
- If the question involves analyzing an algorithm, you must formally explain the time and/or space usage, along with the approximation guarantees (when applicable).
- When you are asked to prove a bound, it suffices to prove it up to multiplicative constants, i.e., using $O(\cdot), \Theta(\cdot)$, or $\Omega(\cdot)$ notation. No need to optimize (multiplicative) constants!
- You may use other resources, but you must cite them. If you use any external sources, you still must provide a complete and self-contained proof/result for the homework solution.

Problem 1: Approximate Counting, Remix

In Lectures 4 and 5, we analyzed Morris' algorithm, which approximated the number of updates n by using the following estimator. Initialize a counter X to 0 , and for each update, increment X with probability $1 / 2^{X}$. Then, the algorithm output $\tilde{n}=2^{X}-1$. To obtain good bounds on the probability that $|\tilde{n}-n|<\varepsilon n$, we considered Morris+ and Morris++ that eventually took the median of many means, where each mean averaged many estimates. Consider a different algorithm, where we still initialize X to 0 , but we increment it with probability $1 /(1+a)^{X}$ for some parameter a.
(a) Determine an estimator \tilde{n} as a function of X and a such that it is an unbiased estimator, that is, $\mathbb{E}[\tilde{n}]=n$ after n updates.
(b) How small must a be so that our estimate \tilde{n} of n satisfies $|\tilde{n}-n|<\varepsilon n$ with at least $9 / 10$ probability when we return the output of a single estimator (instead of averaging many estimators as in class)?
(c) Derive a bound S on the space (in bits) as a function of n, ε, a so that this algorithm uses at most S space with at least $9 / 10$ probability after n increments (in addition to satisfying $|\tilde{n}-n|<\varepsilon n$ with probability at least $9 / 10)$.

Problem 2: Pairwise Independence and Hashing

(a) Let q be a prime number. For integers $c, d \in\{0,1, \ldots, q-1\}$, define the hash function $h_{c, d}$ as

$$
h_{c, d}(x)=c x+d \quad \bmod q .
$$

Let \mathcal{H} be the set of all such hash functions, defined as

$$
\mathcal{H}=\left\{h_{c, d} \mid c, d \in\{0,1, \ldots, q-1\}\right\} .
$$

Prove that \mathcal{H} is a pairwise independent hash family. That is, prove that for any distinct $i \neq i^{\prime}$ and any j, j^{\prime}, we have that

$$
\operatorname{Pr}_{h_{c, d} \in \mathcal{H}}\left[h_{c, d}(i)=j \text { and } h_{c, d}\left(i^{\prime}\right)=j^{\prime}\right]=\frac{1}{q^{2}},
$$

where $h_{c, d} \in \mathcal{H}$ is chosen uniformly by choosing c, d at random in $\{0,1, \ldots, q-1\}$.
Hint: Start with $q=2$ and $\{0,1\}$ values; then, generalize to all prime $q \geq 2$. For the general case, you can use that $c x+d=j$ has a unique solution in terms of x if $c \neq 0$.
(b) Let Y_{1}, \ldots, Y_{n} be pairwise independent random variables. Prove that

$$
\operatorname{Var}\left[\sum_{i=1}^{n} Y_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[Y_{i}\right]
$$

(c) Extra Credit. Let q be a prime, and let k be an integer with $q \geq k$. Consider the set \mathcal{H} of degree $k-1$ polynomials over \mathbb{F}_{q}. More precisely, let \mathcal{H} be the set of polynomials $h_{\vec{c}}$ defined by a vector \vec{c} of k coefficients $c_{0}, c_{1}, \ldots, c_{k-1} \in\{0,1, \ldots, q-1\}$ such that

$$
h_{\vec{c}}(x)=c_{k-1} x^{k-1}+c_{k-2} x^{k-2}+c_{1} x+c_{0} \quad \bmod q
$$

Prove that \mathcal{H} is a k-wise independent hash family. That is, prove that for all distinct $i_{1}, i_{2}, \ldots, i_{k}$ and all $j_{1}, j_{2}, \ldots, j_{k}$, we have

$$
\underset{\vec{c}}{\operatorname{Pr}}\left[h_{\vec{c}}\left(i_{1}\right)=j_{1} \text { and } h_{\vec{c}}\left(i_{2}\right)=j_{2} \text { and } \cdots \text { and } h_{\vec{c}}\left(i_{k}\right)=j_{k}\right]=\frac{1}{q^{k}},
$$

where the probability is over uniformly random $c_{0}, c_{1}, \ldots, c_{k-1} \in\{0,1, \ldots, q-1\}$.
Hint: Consider the $k \times k$ Vandermonde matrix, which is invertible.

Problem 3: Streaming Sampling

Consider the following algorithm for sampling a random element in a stream. You see $x_{1}, x_{2}, \ldots, x_{m}$ one at a time. For the first element x_{1}, store it as $s=x_{1}$, and initialize a counter $i=1$. Every time you see an new element x_{i+1}, increment the counter, and flip a biased coin that comes up heads with probability $1 /(i+1)$. If you get heads, then replace the stored element s with x_{i+1}.
(a) Prove that if you have seen m elements in the stream so far, then the probability that you have stored any given element is exactly $1 / m$. That is, show that $\operatorname{Pr}\left[s=x_{i}\right]=1 / m$ for all $i=1,2, \ldots, m$ after you have seen all m elements.
(b) For a parameter $k>1$, generalize the algorithm to sample k elements without replacement from the stream. As a hint, you can store the first k elements, and then replace one of the stored elements with a new element using a random process. Prove that for any subset $S \subseteq\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of size $|S|=k$, the algorithm outputs S with probability $1 /\binom{m}{k}$.

