
Algorithms for Big Data Fall 2020

Homework 3 Solutions

Problem 1: Tales of different norms

(a) Prove that the following two relationships hold for any vector x ∈ Rn:

‖x‖∞ ≤ ‖x‖2 ≤
√
n · ‖x‖∞ and ‖x‖2 ≤ ‖x‖1 ≤

√
n · ‖x‖2.

Solution: To prove:

‖x‖∞ ≤ ‖x‖2 ≤
√
n · ‖x‖∞

Let X = (x1, x2, ...xn)

‖x‖∞ = max
i
|xi|

‖x‖2 =
√

x2
1 + x2

2 + ... + x2
n

Consider LHS,

max
i
|xi| ≤

√√√√ n∑
i=1

x2
i

Consider RHS, √√√√ n∑
i=1

x2
i =

√
x2
1 + x2

2 + ... + x2
n ≤

√
n ·max

i
|xi|2 =

√
n · ‖x‖∞

To prove:

‖x‖2 ≤ ‖x‖1 ≤
√
n · ‖x‖2

‖x‖2 =
√
x2
1 + x2

2 + ... + x2
n =

√√√√ n∑
i=1

x2
i

‖x‖1 =

n∑
i=1

|xi|

‖x‖2 =

√√√√ n∑
i=1

x2
i ≤

n∑
i=1

√
x2
i =

n∑
i=1

|xi| = ‖x‖1

Using the Cauchy-Schwarz inequality we get,

‖x‖1 =

n∑
i=1

|xi| ≤

√√√√ n∑
i=1

|xi|2 ·

√√√√ n∑
i=1

12 =
√
n · ‖x‖2

(b) Provide example vectors that satisfy each of the above four inequalities with an equality.

1

Solution: Let X = (1, 0)

‖x‖1 = ‖x‖2 = ‖x‖∞ = 1

Let X = (1,−1), (n = 2)

‖x‖1 = 2

‖x‖2 =
√

2

‖x‖∞ = 1

‖x‖2 ≤
√
n · ‖x‖∞ and ‖x‖1 ≤

√
n · ‖x‖2.

Problem 2: Streaming Sampling

Let a1, a2, . . . , an be a stream of n integers (not necessarily distinct) in the range {1, 2, . . . , n}. The

algorithm knows n up front. Each ai will arrive one-by-one. The algorithm may compute something

and update the storage, but then the value may not be accessed again (unless it is explicitly stored).

The space is the maximum amount of memory used throughout. For each of these, you must prove

that the algorithm works correctly, and provide a bound on the space.

(a) Assume that you know A = ‖~a‖22 =
∑n

i=1 a
2
i , the sum-of-squares of the values in the stream.

Provide an algorithm using O(log n) space to sample an element ai from the stream with

probability exactly pi =
a2
i

A .

Solution: Note that you can come up with an algorithm analogous to the Problem 3 of HW2 where at

each step during the stream you choose to keep ai with probability
a2
i

Ai
(Ai is the running sum

up to ai).

Here, we will discuss a different solution which requires you to know
∑n

i=1 a
2
i beforehand.

Before the stream starts choose a random number j in the range 1 to A with equal probability.

Initialize running sum = 0

For i = 1, 2...n

running sum← running sum + a2i

If running sum ≥ j :

Let X ← ai

Output X

(b) Now, assume that you do not know A ahead of time. Provide an algorithm using O
(
log2 n

)
space that samples ai from the stream with probability approximately pi =

a2
i

A . More precisely,

you should sample ai with probability p̃i satisfying pi

4 ≤ p̃i ≤ 4pi for all i ∈ [n].

Hint: Use many different samples like the ones from (a) depending on the true value of A, and

in parallel, compute A exactly so that you know which sample to use for the output.

Solution: Run the above algorithm independently for A′ = n, 2n, 4n.... Sample a total of O(logn) ele-

ments from the stream.

Compute the value of A. Determine the specific A′ for which the following condition is true

A′ ≤ A ≤ 2A′

Choose a sample from A′ with a probability
1

2
and choose from 2A′ with probability

1

2
.

2

Because we are off by a factor of at most 2 in the estimate for A, the probability will be off

slightly as well. But it is an easy calculation to show the in the end element ai is output with

probability p̃i satisfying pi

4 ≤ p̃i ≤ 4pi for all i ∈ [n].

For lower bound, notice that ai is output with probability at least pi

2 in the case of using 2A′.

Since this case is chosen with probability 1/2, we have that pi

4 ≤ p̃i.

For the upper bound, it can be output in two ways: either with probability at most pi for the

2A′ case. Or with probability at most 2pi for the A′ case. Each happens with probability 1/2

so we have that p̃i ≤ (1/2 + 2/2)pi = (3/2)pi.

(c) Improve your algorithm from (b). Now, given ε in the range 0 < ε < 1, your sampling

probabilities should satisfy (1− ε)pi ≤ p̃i ≤ (1 + ε)pi.

Solution: We sketch the high-level idea. As with the previous part, we use multiple estimators. But we

want to use a finer granularity, so we look at A′ = (1 + ε′)kn for some ε′ < ε and for k in the

range 1 ≤ k ≤ log1+ε′(n
2). Since now A′ does not have to an integer, instead of selecting a

random number in the range of 1 to A′, we sample j from a continuous uniform distribution

defined on the interval (0, A′). Then, we consider A′ or (1 + ε′)A′ for the estimates that are

closest to A, satisfying A′ ≤ A ≤ (1+ε′)A′. We choose between the the outputs from these two

cases with probabilities depending on ε′. Additionally, in the second case for (1+ε′)A′, we only

return an output if initial random sample j is less than or equal to A where A =
∑j

i=1(ai
2).

Since A ≥ A′, the numbers for which the running sums are greater than A′ have zero probability

of being the output in the first case. Therefore, the output probabilities for such numbers only

comes from the second case where the range (1 + ε′)A′ is greater than A. We select the output

from A′ with probability q and from (1 + ε′)A′ with probability 1− q. The output probability

for a number ai whose running sum is greater than A′ is given by:

p̃i = (1− q) Pr(j ≤ A) · Pr(X = ai|j ≤ A)

= (1− q)
A

(1 + ε′)A′
a2i
A

= (1− q)
A

(1 + ε′)A′
pi

≥ (1− q)pi
1 + ε′

The output probabilities for all ais will at least be (1−q)pi

1+ε′ . Therefore, lower bound on p̃i for

all ais is (1−q)pi

1+ε′ .

Now for the upper bound, the output probability for any number ai can be bounded as,

p̃i ≤ q
a2i
A′

+ (1− q)
A

(1 + ε′)A′
a2i
A

≤ qpi
A

A′
+ (1− q)

pi
(1 + ε′)

A

A′

Since, A
A′ ≤ (1 + ε′), we get:

p̃i ≤ qpi(1 + ε′) + (1− q)pi

≤ p(1 + qε′)

Combining the two bounds on pi, we get,

(1− q)pi
1 + ε′

≤ p̃i ≤ p(1 + qε′)

3

Observe that if we set q = ε′
2
, we can write,

(1− ε′)pi ≤ p̃i ≤ p(1 + ε′3) ≤ p(1 + ε′)

Since, ε′ < ε,

(1− ε)pi ≤ p̃i ≤ p(1 + ε)

Problem 3: Implementing a Sketching Algorithm

Implement and test one of the algorithms from the class, that is, choose one of the following options:

(i) Morris for approximate counting, (ii) FM for distinct elements, or (iii) AMS for `2 estimation.

Implement the algorithm and the + and ++ variants for the one you choose.

(a) Demonstrate/compare the performance of the three variants of the algorithm (normal, +, ++).

Set the input size(s) to be large enough to see some difference in their performance.

(b) Provide results (in a table or plot, clearly labeled) for at least 2 different parameter settings

(and list the parameters). Briefly discuss the results and any interesting observations.

(c) Provide the results of 10 repetitions for each of the two parameter settings (in a table or plot,

clearly labeled), to demonstrate the probability of failure (and list the parameters). Briefly

discuss the results and any interesting observations.

(d) Discuss how theory relates to practice, with quantitative results to back up your claims. For

example, if the theory is pessimistic, then show that the results in practice are better with the

same/improved parameters.

Solution: See other document.

4

