
Algorithms for Big Data Fall 2020

Homework 4 Solutions

Problem 1: Set Similarity

Consider a dataset X that consists of sets of integers in the universe {1, 2, . . . , n}, i.e., X is a set of

sets. For example, there may be a set A ∈ X which is A = {1, 4, 33}, and another set B = {2, 4, 33}.
One way to measure the similarity of two non-empty sets is using Jaccard similarity:

J(A,B) =
|A ∩B|
|A ∪B|

.

In the above example, J(A,B) = |{4,33}|
|{1,2,4,33}| = 2/4 = 1/2.

(a) Prove that the Jaccard distance d(A,B) = 1 − J(A,B) is a valid distance metric for pairs of

sets A,B (that is, show that it satisfies the three properties of a metric).

Solution: 1.

d(A,B) = 1− |A ∩B|
|A ∪B|

= 1− |B ∩A|
|B ∪A|

= d(A,B)

2.

d(A,B) = 0 =⇒ |A ∩B|
|A ∪B|

= 1 =⇒ A = B

3. To prove: d(X,Y ) + d(Y,Z) ≥ d(X,Z) i.e.

|X ∩ Y |
|X ∪ Y |

+
|Y ∩ Z|
|Y ∪ Z|

− |X ∩ Z|
|X ∪ Z|

≤ 1 (1)

We break up X ∪Y ∪Z into seven disjoint subsets which we use to tackle inequality 1. Thus,

X ∪ Y ∪ Z = (A ∪B ∪ C) ∪ (D ∪ E ∪ F ) ∪G

where, This is easily understood from Fig. 1. Let a, b, c, · · · denote the number of elements in

the sets A,B,C, · · · respectively. Hence, the inequality 1 becomes,

d+ g

v − c
+
e+ g

v − a
≤ f + g

v − b
+ 1

where v = a+ b+ c+ d+ e+ f + g, the number of elements of X ∪ Y ∪ Z. Further it can be

written as,
d′

c′
+
e′

a′
≤ f ′

b′
+ 1

or

a′b′d′ + b′c′e′ ≤ a′c′f ′ + a′b′c′

(v2 − av − bv + ab)d′ + (v2 − bv − cv + bc)e′ ≤ (v2 − av − cv + ac)f ′ + (v2 − av − bv + ab)c′

v3 + v2(−a− b− c− d− e+ f − g) + v[ab+ ac+ bc+ ad+ bd+ be+ ce+ 2bg − af − cf ]

+{−abc− abd− abg − bce− bcg + acg + acf} ≥ 0
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Figure 1: Set and subsets representation

The second term is equal to v2(2f − v) so that the sum of the first two terms is 2fv2. The

inequality now, can be written symbollically as,

0 ≤ v(2fv + [ ]) + { }

Since v = a + b + c + d + e + f + g, the two negative terms of [ ] cancel with 2fv. And the

negative terms of { } cancel with terms in v[ ]. Because all the negative terms of the LHS

cancel, the inequality is established.

Alternative Solution : Let d′(X,Y ) = |X ⊕ Y | where X ⊕ Y = (X ∪ Y ) − (X ∩ Y ). Then, triangular inequality

holds for metric d′(., .). This is easy to see using Figure 1.

a+ d+ c+ e ≤ (a+ f + b+ e) + (b+ d+ f + c)

d′(X,Z) ≤ d′(X,Y ) + d′(Y,Z). (2)

Let Y ′ = Y ∩ (X ∪Z), then (X ∪Y ′) = (X ∪Y )∩ (X ∩Z) and (X ∩Y ′) = (X ∩Y ). Similarly,

(Z ∪ Y ′) = (Z ∪ Y ) ∩ (X ∩ Z) and (Z ∩ Y ′) = (Z ∩ Y ).

Observe that, if triangular inequality holds for Jaccard distance for Y ′, it will also hold for Y .

Since,

|X ∩ Y |
|X ∪ Y |

+
|Y ∩ Z|
|Y ∪ Z|

− |X ∩ Z|
|X ∪ Z|

≤ |X ∩ Y
′|

|X ∪ Y ′|
+
|Y ′ ∩ Z|
|Y ′ ∪ Z|

− |X ∩ Z|
|X ∪ Z|

≤ 1 (from eqn 1)

From Equation 2,

d′(X,Z) ≤ d′(X,Y ′) + d′(Y ′, Z),

|X ⊕ Z| ≤ |X ⊕ Y ′|+ |Y ′ ⊕ Z|,
|X ⊕ Z|
|X ∪ Z|

≤ |X ⊕ Y
′|

|X ∪ Z|
+
|Y ′ ⊕ Z|
|X ∪ Z|

Since |X ∪Z| ≥ |X ∪ Y ′| and |X ∪Z| ≥ |Z ∪ Y ′|, we can replace the two |X ∪Z| in the above

inequality with |X ∪ Y ′| and |Z ∪ Y ′| in RHS and the inequality will still hold. Therefore,

|X ⊕ Z|
|X ∪ Z|

≤ |X ⊕ Y
′|

|X ∪ Y ′|
+
|Y ′ ⊕ Z|
|Y ′ ∪ Z|
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. And |X⊕Z||X∪Z| is nothing but the Jaccard distance d(X,Z). Hence,

d(X,Z) ≤ d(X,Y ′) + d(Y ′, Z)

Therefore, it also holds for Y .

(b) Consider the following LSH family for Jaccard distance. Each hash function will be based on a

random permutation π of the universe {1, 2, . . . , n}. Then, we let hπ operate on sets as follows:

hπ(A) = argmin
a∈A

π(a),

so hπ(A) is the “minimum valued” element in A according to π. Prove that

Pr[hπ(A) = hπ(B)] = J(A,B),

where the probability is over a uniformly random permutation π : [n]→ [n].

Solution: Consider an element c ∈ A ∪B.

Pr[c = hπ(A ∪B)] =
1

|A ∪B|

Consider, hπ(A ∪B) ∈ A \B then, hπ(A) ∈ A \B and thus hπ(A) 6= hπ(B) ∈ B.
Similarly, hπ(A ∪B) ∈ B \A then, hπ(B) ∈ B \A and thus hπ(A) 6= hπ(B) ∈ A.
If, hπ(A ∪B) ∈ A ∩B then hπ(A ∪B) = hπ(B) = hπ(A).

Pr[π(A) = hπ(B)] = Pr[hπ(A ∪B) ∈ A ∩B)] =
|A ∩B|
|A ∪B|

= J(A,B)

Interestingly, Jaccard distance d(A, b) = 1 − J(A,B) is just Pr[hπ(A) 6= hπ(B)] and this can

be used to get a concise proof for the triangular inequality proof in part a.

Pr[hπ(A) 6= hπ(B)] ≤ Pr[(hπ(A) 6= hπ(C)) ∪ (hπ(B) 6= hπ(C))]

Using union bound,

Pr[hπ(A) 6= hπ(B)] ≤ Pr[(hπ(A) 6= hπ(C)) ∪ (hπ(B) 6= hπ(C))]

≤ Pr[hπ(A) 6= hπ(C)] + Pr[hπ(B) 6= hπ(C)]

Therefore,

d(A,B) ≤ d(A,C) + d(B,C)

(c) Explain how you might use the hash family hπ as an LSH family for ANNS under Jaccard

distance. What values of r, c make sense? What values of p1 and p2 can you achieve? You do

not need to analyze the formal near neighbor algorithm (a high-level description suffices).

Solution: Based on the idea of LSH family for Hamming distance that maps each vector to k bits. Choose

k random permutations

π1, π2, ...πk

from [n]. Then define

hk(x) = [hπ1(A), hπ2(A), hπ3(A)...hπk(A)]

Then, when d(A,B) = 1− J(A,B) = r and Pr[h(A) = h(B)] = J(A,B) = 1− r, we have that

p1 is 1− r. And when d(A,B) = 1− J(A,B) = cr and Pr[h(A) = h(B)] = J(A,B) = 1− cr,
then p2 becomes 1−cr. The above inference should hold good for r, c between 0 and 1. (Given

that J(A,B) is between 0 and 1)
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Problem 2: 1D is Easy

Provide an algorithm for exact nearest neighbor search on the real line R. For simplicity, assume

you have a dataset of n vectors X ⊆ R such that each vector can be represented using O(log n) bits

(for example X may consist of integers between −n2 and +n2).

The overall space of the algorithm should be O(n log n). Given a query q ∈ R you want to find the

closest vector to q in X, that is, output

argmin
x∈X

|x− q|.

A nearest neighbor query with your data structure should use O(log n) comparisons; so, the total

query time should be O(log2 n).

Hint: Consider a binary search tree over the vectors of X, and break up the real line into intervals.

For each interval, store the largest and smallest vectors from X in the interval.

Solution: Consider X = {x1, x2, ...xn}. Assume that the elements of X are in sorted order. If not, invoke

a sort function to sort X. Build a Binary Search Tree(BST) over X where the leaves of the

tree correspond to the elements of X in sorted order from left to right, and every intermediate

node in the tree has 2 children - left child and right child. The values of left and right child

represents the interval [left child, right child] which corresponds to the respective branch. This

can also be viewed as a Hierarchical Clustering design where the inner most clusters are formed

by each single element of X. The clusters are built by grouping the pair of nearest points to

form one cluster recursively, till one giant cluster is formed which contains all the points in X.

Step 1: For a new query q check if q falls in the interval [min(X), max(X)]. If TRUE then

move to step 2 else return min(|min(X)− q|, |max(X)− q|).
Step 2: Check if q falls in the left branch of the tree or right branch of the tree by checking if q

is in the interval defined by the left sub-tree or right sub-tree. If q falls in either of the branches

then traverse to the respective branch. Else, return the minimum of |LeftChildMaxV alue−q|
and |RightChildMinV alue− q|
Step 3: Repeat Step 2 recursively until the closest point is found.

Space and Time: Storage of n elements is O(n log n) as desired. BST reduces the number

of comparisons to O(log n) comparisons. Thus the total query time is O(log2 n)

Problem 3: Small Hamming Distance

Let X ⊆ {0, 1}d be a dataset of n vectors consisting of d bits each. This problem will show how

to solve exact nearest neighbor for Hamming distance one and two. For each subproblem, design a

deterministic data structure, prove that it works as desired, and analyze the time/space.

(a) Given a query q ∈ {0, 1}d output a vector x ∈ X with dH(q, x) = 1 if there exists such a vector.

Query time O(d2 log n). Space O(nd).

Solution: Sort the elements in X in increasing order and build a Binary Search Tree (BST). During

sorting, for xi, xj ∈ X, to determine whether or not xi < xj , it is sufficient to find the smallest

index t ∈ [d] where xti 6= xtj such that xi < xj if xti < xtj .

Build the BST data structure with ≤ 2n intervals with the end points being elements in this

sorted vector sequence. Each interval is represented by 2 vectors thus, occupies a space of

O(d). The total space requirement for all the intervals is O(nd).
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When a new query q is encountered, all possible vectors with a hamming distance of 1 with q

are built. Since q is a d-dimensional vector, only d unique vectors of q are possible which has

a hamming distance of 1. In a BST, a vector(if exists) can be found in O(d log n) time. So for

d queries, the total time is O(d2 log n).

(b) Given a query q ∈ {0, 1}d output a vector x ∈ X with dH(q, x) ≤ 2 if there exists such a vector.

Query time O(d3 log n). Space O(nd).

Solution: For a d-dimensional query q, d2 vectors are possible which have a hamming distance of 2.

Therefore, the exact algorithm discussed in 4(a) can be used here as well. The total time

complexity now becomes O(d3 log n).

(c) Given a query q ∈ {0, 1}d output a vector x ∈ X with dH(q, x) ≤ 2 if there exists such a vector.

Query time O(d2 log(nd)). Space O(nd2).

Hint: Consider the nd possible vectors that have Hamming distance one from vectors in X.

Solution: For each x ∈ X, build all possible vectors of x which has a hamming distance of 1. Now, build

a BST on this dn vectors. So the search time in a BST is O(d log dn). When a new query q

comes in, build all possible d vectors of q which has a hamming distance of 1. For each of the d

vectors invoke the BST search algorithm. The total run time of the algorithm is O(d2 log(nd))

and Space is O(nd2).

Problem 4: Implementing Dimensionality Reduction

Implement and test the Johnson-Lindenstrauss dimensionality reduction method from Lecture 10.

The goal here is for you to explore how well the dimensionality reduction works as you change the

matrix and the dimensionality of the embedded data. Discuss your findings in addition to providing

the experimental results. You do not need to provide code, and you can use whatever programming

language you are comfortable with.

(a) Find two datasets of n ≥ 200 points, either randomly generated or from a public repository

(e.g., UCI, ScikitLearn, etc). The dimension of the dataset should be at least d ≥ 100.

(b) Provide results (in a table or plot, clearly labeled) for the distortion of the projected points

versus the original points, as you increase the dimensionality of the embedded points (e.g.,

compare the distortion as you scale from a small number of dimensions to the true dimension

of the dataset). Is the behavior the same or different for the two datasets?

(c) Replace the normal distribution with ±1 random variables. How does the embedding change

(better, worse, different, . . .)?

(d) Extra Credit. Consider the sparse JL transform, where the matrix has entries in {−1, 0, 1}
where ±1 occurs with equal probability for the nonzero entries, but some fraction of each row

is fixed to be 0 (the 0 entries chosen randomly in each row). How many non-zero entries do

you need to achieve comparable distortion to the case where all entries are normal or ±1?
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