
Algorithms for Big Data Fall 2020

Lecture 13 — October 30, 2020

Prof. Cyrus Rashtchian Topics: LSH for Hamming Distance

Overview. Today we talk about approximate near neighbor search (ANNS) for Hamming distance.

1 Locality Sensitive Hashing (LSH)

An influential line of work studies approximate similarity search, which both relaxes the distance

threshold r and forgives a small percentage of false negatives. A main tool is Locality Sensitive

Hashing (LSH), pioneered by Indyk and Motwani and Kushilevitz, Ostrovsky, and Rabani. An LSH

family is a distribution over hash functions such that near points map to the same bucket with

a higher probability than far points do. For Hamming space, an example LSH family chooses k

random coordinates in {1, 2, . . . , d} and maps a vector to its k-bit projection on these coordinates.

In any similarity join or clustering algorithm, LSH provides a way to reduce the running time

through filtering. A modified algorithm would first build several hash tables based on independent

hash functions from an LSH family. Then, the algorithm only compares points that have ever been

hashed to the same bucket. The accuracy of this method can be improved by using more hash tables.

In many cases, hashing the dataset some number of times is much faster than performing a large

number of comparisons. A central motivation is Approximate Near Neighbor Search (ANNS).

Definition 1. Let P ⊆ X be a dataset in a metric space (X , dX). The (c, r)-ANN problem for c > 1

and r ∈ R≥0 is to efficiently pre-process P to quickly answer the following query. Given q ∈ X ,

either return x ∈ P with dX (q, x) ≤ cr, or report that no such point exists.

The algorithm knows the approximation c and the threshold r ahead of time. Therefore, we focus

on data structures parameterized by c, r. A useful primitive is an LSH family.

Definition 2. Let r and c ≥ 1 and p1, p2 ∈ (0, 1] with p1 > p2 be parameters. A hash family H in

a metric space (X , dX) is (r, cr, p1, p2)-sensitive if the following two conditions are satisfied:

1. Pr[h(x) = h(y)] ≥ p1 for all x, y ∈ X with dX (x, y) ≤ r,

2. Pr[h(x) = h(y)] ≤ p2 for all x, y ∈ X with dX (x, y) ≥ cr,

where the probability is over sampling a uniformly random h ∈ H.

2 Approximate Nearest Neighbor Search

Theorem 3. For Hamming distance on {0, 1}d, there exists a randomized (c, r)-ANN data structure

and randomized query algorithm with the following three properties:

1. Space: O(n1+1/c + nd)

2. Query Time: O(dn1/c)

3. Success Probability: 0.99.

1

We can increase the success probability to anything large by running multiple independent copies of

the data structure (analogous the ++ versions of the sketching algorithms). In practice, it’s often

best to test different parameters and see what works well for the dataset at hand.

2.1 The data structure

The data structure will store hash tables determined by hashing input vectors to subsets of coor-

dinates. Let S ⊆ {1, 2, . . . , d} be a subset of coordinates. We will let k denote the size of S so

that |S| = k, where we will set k later to trade-off accuracy and space. Let P be our dataset with

|P | = n.

For a vector x ∈ {0, 1}d, define the projection onto S as the vector x|S ∈ {0, 1}k consisting of k bits.

We can use this to define a hash function hS : {0, 1}d → {0, 1}k, where hS(x) = x|S . By doing so,

we can hash every vector into one of 2k possible hash buckets.

On query q ∈ {0, 1}d, we will compare q to all points x in the dataset such that hS(q) = hS(x). In

other words, compare q to all elements that hash to the same bucket.

For a dataset of size n, the space usage is O(nd), because we store each vector x in exactly one hash

bucket. The query time will depend on the number of other points in the same bucket as q.

2.2 The overall ANNS algorithm for Hamming distance

We will build our data structure using a bunch of independent hash tables. We first describe one

such table. Let k < d be a as set in the above lemma (roughly k = d
cr log n).

We choose a set of k indices (with replacement, for a simple analysis). Denote them as S =

{i1, i2, . . . , ik}. Then we project each vector x ∈ S onto these k coordinates.

h(x) = x|S = (xi1xi2 · · ·xik).

This gives us a new vector h(x) that is k bits long.

We build a hash table based on these k bits. There are at most 2k buckets, some of which may be

empty. And two vectors x and y are in the same bucket if h(x) = h(y).

2.3 Building a data structure

We will use the above hash tables (multiple copies) to design an efficient near neighbor data structure.

First we will denote

• p1 = 1− r
d ≈ e

−r/d

• p2 = 1− cr
d ≈ e

−cr/d

We set k = d dcr · lnne. Let’s ignore the ceiling for simplicity.

The probability of close collisions (hashing to the same bucket with x and y are close) is

pk1 ≈ e−rk/d = 1/n1/c.

And for far collisions it is

pk2 ≈ e−crk/d = 1/n.

2

We will repeat the hashing process L = 1/pk1 = n1/c times, where each time we hash and store all

the points in our dataset P with |P | = n. There will be L hash tables (each storing all n points).

So the total storage is O(nd · L) = O(n3/2d).

Summarizing, we have the following:

LSH-based ANNS for Hamming distance

• Input: Dataset X ⊆ {0, 1}d, and distance threshold r ∈ [d], and approximation parameter c.

• Parameters: Number bits k = d dcr · lnne per hash; number hash tables L = 1/pk1 = n1/c.

• Preprocess:

1. Choose L hash functions h1, . . . , hL by choosing k bit positions independently for each

(with replacement).

2. For each x ∈ P , hash P based on the L hash functions h1(x), . . . , hL(x).

3. Store X and store the L hash tables (which are partitions of X based on hi)

• Query:

1. On query point q ∈ {0, 1}d, hash q based on the L hash functions h1(q), . . . , hL(q).

2. For i = 1, 2, . . . , L, compare q against all x ∈ P that have the same hash hi(x) = hi(q).

3. As soon as you find y ∈ P with d(q, y) ≤ cr, then output y as the near neighbor for q.

4. If you compare against 100L input points, and find that none of them are close enough

to q, then return “no close pair to q in X” and terminate.

2.4 Analysis

Space: There are n = |X| input points, and each take d bits. So the space is O(nd) plus what is

needed for the hash tables. There are L hash tables, so the space is O(nd + Ln log n), because we

need to store the index of the hash buckets (the hash value h(x)) and also a pointer to the actual

input point (each takes roughly O(log n) bits). Note that each hash table is a partition of X, so the

total number of points in each hash table is exactly n.

Time: We need to be a bit more careful about the time, because the hashing is random. What

show is that we can stop after looking at 100L elements, and if none of them have distance at most

cr, then we can conclude that no close pair exists in X.

Lemma 4. Let E be the event that a point x with dH(q, x) ≥ cr ends up in the same hash bucket

as q does. Then,

Pr
S

[E] ≤
(

1− cr

d

)k
.

Proof. The event E occurs every coordinate i ∈ S has the property that xi = qi. Since we have

assumed that dH(q, x) ≥ cr, we know that there are at least cr coordinates that are ’bad’ in the

sense that xi 6= qi (among d total coordinates). Therefore, with probability at least cr
d , a coordinate

in S will ’separate’ q and x. On the other hand, with probability 1 − cr
d , the coordinate will have

the same value for q and x. We choose each of the k coordinates independently to form S, and

therefore, the probability that hS(x) = hS(q) is at most
(
1− cr

d

)k
.

3

The expected size of q’s hash bucket is at most n
(
1− cr

d

)k
. We will choose k to be the minimum

integer such that
(
1− cr

d

)k ≤ 1.

Lemma 5. The expected size of q’s hash bucket is at most one, and therefore, the expected query

time is O(d).

Lemma 6. Let E ′ be the event that a point x with dH(q, x) ≤ r ends up in the same hash bucket as

q does. Then,

Pr
S

[E ′] ≥
(

1− r

d

)k
.

Proof. The event E ′ occurs if every coordinate i ∈ S has the property that xi = qi. Since we have

assumed that dH(q, x) ≤ r, we know that there are at least r coordinates that are ’bad’ in the sense

that xi 6= qi (among d total coordinates). Therefore, with probability at least r
d , a coordinate in S

will ‘separate’ q and x. On the other hand, with probability 1− r
d , the coordinate will have the same

value for q and x. We choose each of the k coordinates independently to form S, and therefore, the

probability that hS(x) = hS(q) is at most
(
1− r

d

)k
.

Lemmas 4 and 6 show is that this is an LSH family with pk1 = (1− r/d)k and pk2 = (1− cr/d)k.

Lemma 7. If there is some y ∈ P with d(q, y) ≤ r, then we will find some y′ ∈ P it with d(q, y′) ≤ r
with probability 0.99 after comparing q against at most 100L points (for L and k set as above).

Proof. We know from Lemma 5 that there is 1 expected far point in each bucket as q in the hash

table. We are considering L different hash tables, and thus, there are L far points in the same hash

bucket as q in one of the tables (by linearity of expectation, over the L hash tables). By Markov’s

inequality, the probability that we see 100L far points is at most 1/100 = 0.01.

The algorithm stops after comparing against 100L points, so we never have more comparisons than

this. But with probability 0.99, we have fewer than 100L far points to compare against anyway.

From Lemma 6, the probability that we see a close point in one hash table is pk1 = n1/c. We can

set L = 10/pk1 to be the number of hash tables. The probability of failure is the probability that we

don’t see a close point in any of the hash tables. We choose the hash functions independently, so

the probability of failure is

(1− pk1)L ≈ e−L·p
k
1 = e−10.

Therefore, with probability 1− e−10, which is very close to one, we will see a close point to q in one

of the hash tables, and therefore we will succeed.

Recap. The constants in the above proofs can be optimized in many ways. We set k and L for

convenience, but a tighter analysis with better constants is possible. But overall, we have showed

that the number of comparisons is bounded by O(L) = O(1/pk1) = O(n1/c) as desired (each takes d

time). Similarly, the space is bounded by O(nL+ nd) = O(n1+1/c + nd), also as claimed.

We discuss in the next section how this proof can be generalized. In particular, we only used

properties of Hamming distance to design the hash functions. Other than that, the parameters were

set in terms of p1 and p2, and the same data structure and analysis holds verbatim for other metrics

and LSH families as well. This is one of the powerful aspects of the LSH definition.

We also note that an improvement for Hamming distance is known if we allow the ANNS algorithm

to depend on the data when building the data structure [3]. A data dependent improvement for

Euclidean distance is also known [2].

4

3 Other distance metrics

To solve the (c, r)-ANN problem, it actually suffices to find (r, cr, p1, p2)-sensitive hash families.

Then, the above analysis extends analogously.

If the dataset has n points, then any efficiently-computable family H leads to a data structure for

the (c, r)-ANN problem with space n1+ρ+o(1) and query time nρ+o(1) where

ρ =
log(1/p1)

log(1/p2)
.

For Hamming distance, (r, cr, p1, p2)-sensitive families are known achieving ρ = 1/c. For Euclidean

distance, the value is ρ = 1/c2. The time and space bounds come from building nρ independent

hash tables, each having n points.1

For details, we refer readers to the well-written references on LSH and applications [1, 4].

Next time, we will see LSH for Euclidean distance with worse parameters than the best possible

(we will only achieve ρ = 1/c). There are also LSH families for certain `p norms, for earth movers

distance, and for set similarity functions (e.g., Jaccard). It’s a major open question to find a good

LSH for edit distance and other more complicated metrics. Metric embeddings, such as Bourgain’s

embedding, can be used to solve ANNS for general metric spaces but with a worse approximation

factor. For example, using Bourgain’s embedding, we can solve ANNS for any metric space with an

O(log n) approximation factor by first embedding in Euclidean distance.

References

[1] A. Andoni, P. Indyk, I. Razenshteyn. Approximate Nearest Neighbor Search in High Dimen-

sions. Proceedings of ICM, 2018 https://arxiv.org/abs/1806.09823

[2] A, Andoni, T. Laarhoven, I. Razenshteyn, and E. Waingarten. Optimal hashing-based time-

space trade-offs for approximate near neighbors. SODA 2017

[3] A. Andoni, I. Razenshteyn, N. Shekel Nosatzki. LSH Forest: Practical Algorithms Made The-

oretical SODA, 2017

[4] Har-Peled, Sariel, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards

removing the curse of dimensionality. Theory of computing 8.1 (2012): 321-350.

1The o(1) factors correspond to the space overhead for the points (which is assumed to be no(1) per point) and
the time for computing a hash function (which is also assumed to be no(1)).

5

