
Algorithms for Big Data Fall 2020

Lecture 17 & 18 — November 9 & 13, 2020

Prof. Cyrus Rashtchian Topics: Clustering Intro

Overview. We introduce clustering, providing several examples of objectives. We also provide an

algorithm for k-center clustering, which is a 2-approximation.

1 Clustering

Clustering means dividing data into groups based on similarity. Elements within the same group

should be more similar to each other than to any element of another group. A partition of the

dataset into non-empty subsets will serve as our definition of a clustering. Similarity joins can be

thought of as a form of clustering To analyze a clustering algorithm, we need to measure the quality

of a clustering. There are many possible objectives

• k-center for any metric space (X , dX). Given a dataset S ⊆ X , the goal is to quickly find a

set of centers T ⊆ X with the constraint |T | = k. The objective is that maxa∈S dX (a, T) is

minimized over all such sets T . Here we extend the definition of a distance function to sets by

dX (a, T) = minb∈T dX (a, b).

• k-median: choose k cluster centers (not necessarily part of the input data), and minimize the

`1 distance to the cluster centers.

• k-means [Mac67, Ste56]. choose k cluster centers (not necessarily part of the input data), and

minimize the `2 distance to the cluster centers (sometimes the square of the `2 distance is more

convenient).

• Connected components: when the input is a graph, sometimes it is already interesting to just

find the connected subgraphs. This is relevant, for example, when you build the similarity

graph (connect pairs with distance ≤ r), and when this graph is disconnected because the

clusters are separated.

• Sparsest cut and Spectral clustering: minimize certain graph-cut objectives.

• Correlation clustering: If we are clustering vertices of a graph, then we could maximize the

number of edges within each cluster and minimize the number of edges between clusters.

• Mixture models: If the dataset is sampled from an underlying distribution, then the goal could

be to find a clustering that helps us estimate certain parameters (e.g., determining means and

variances of a mixture of Gaussians).

• Hierarchical clustering. As one example of an agglomerative method, we mention linkage-based

algorithms. Here, the clustering is initialized with every point being its own separate cluster.

Then, in each iteration, the two closest clusters are merged. Variations exist depending on the

measure of cluster closeness. Some popular examples include single-linkage (distance between

the two closest points in two clusters) and average-linkage (mean distance between points in

two clusters). In practice, these criteria may lead to very different clusterings.

We will mostly focus on k-center and k-means (which are top-down/divisive). However we provide a

brief glimpse into hierarchical clustering, which is an important agglomerative clustering framework.

1

1.1 Linkage-based Hierarchical Clustering

Later, we present Gonzalez’s algorithm, where clusters can be formed by associating each point

in X to its closest center in T . Moreover, this can be viewed as a top-down approach, since we

are broadly grouping related points based on common criteria. In contrast, clusters could also be

formed in a bottom-up fashion, where nearby points are iteratively grouped together until clusters

emerge. Clustering algorithms are often broadly organized into two categories based on whether

they operate in a top-down or bottom-up manner, known as divisive versus agglomerative methods

in the clustering literature [FHT01, HMMR15, KR09].

As an example of some bottom-up approaches, we consider linkage-based methods. In all of them,

the points in X start as singleton clusters, so there are n different clusters. Then, at each step we

the closest pair of clusters. There are many different definitions. Let’s say that C is a set of clusters

(a partition of X). In the beginning, |C| = n, and then, as the clusters merge there will be fewer

and fewer clusters.

Popular merging rules:

• Single-linkage: merge the pair of clusters C,C ′ that minimizes

min
x∈C,y∈C′

d(x, y)

• Average-linkage: merge the pair of clusters C,C ′ that minimizes

1

|C| · |C ′|
∑

x∈C,y∈C′

d(x, y)

• Complete-linkage: merge the pair of clusters C,C ′ that minimizes

max
x∈C,y∈C′

d(x, y)

Each of these merge rules will lead to a different overall clustering. There are two main stopping

criteria. Either you can stop when where are k clusters in total. Or, you can keep going to the end

and get a full hierarchy of the points.

2 k-Center Clustering

An example objective is the k-center problem, which is well-defined for any metric space with distance

d(·, ·). Given a dataset S ⊆ X , the goal is to quickly find a set of centers T ⊆ X with the constraint

|T | = k. The objective is that maxx∈X d(x, T) is minimized over all such sets T . As before, we

extend the definition of a distance function to sets by dX (x, T) = minc∈T dX (x, c).

Convenient Notation. Let T ⊆ X be a set of cluster centers. This leads to a clustering by

associating each point x ∈ X to the closest cluster center c ∈ T .

If |T | = k, then we can define ST as a vector which the distances to the closest center c ∈ T . More

precisely, we define the n-dimensional vector, where we denote S = {x1, x2, . . . , xn}. Then,

ST = [d(x1, T), d(x2, T), . . . , d(xn, T)],

which is a vector in Rn with nonnegative entries (because distances are nonnegative). The ith

coordinate is the distance between xi and the closest point in T . Then, many objectives can be

viewed as norms of this XT vector, where we want to find T ⊆ X such that

2

• k-center: minimize cost(T) = ‖ST ‖∞.

• k-median: minimize cost(T) = ‖ST ‖1.

• k-means: minimize cost(T) = ‖ST ‖22.

This makes it very clear that the only difference in these different objectives is how to measure the

overall cost (which is based on different norms). It’s also easiest to see in this notation that the

points X do not have to be real vectors; they can be in any metric space. However, it’s very common

to consider k-median and k-means when S ⊆ Rd is a set of real vectors, and the distance d(·, ·) is

the `1 or `2 distance as well. This also makes it easier to talk about the ‘center’ or the ‘centroid’ of

a cluster, which can be defined as the center of mass of the points in the cluster.

It’s a big debate how to choose the number of clusters k correctly. No one really knows. If k is too

small, you get spread out clusters. If k is too large, you may not capture the structure of the data.

Also, if k = n, then the cost is always zero (because if S = T , then the closest center to a point can

be taken to be point itself). One benefit of bottom-up agglomerative methods is that you do not

have to specify k ahead of time.

2.1 The greedy “farthest point” traversal algorithm

For this section, we are going to use X to denote the dataset as well as the metric space. The reason

is that for an arbitrary metric space, and for the k-center objective, we don’t have information about

the metric space outside of the dataset (unlike for real vectors, where you know the whole space).

You can think of the dataset as a subset of a larger space, but we won’t use points outside of S = X .

Gonzalez showed that this problem is NP-hard in general, and he exhibited a simple 2-approximation

algorithm [Gon85]. His algorithm greedily finds points in X that are farthest from previously chosen

centers, and it runs in time O(k|X |) = O(kn). More precisely, the algorithm iteratively constructs

the set of centers T by adding the farthest point in X to the set of centers so far, and then repeats

until there are |T | = k centers. This algorithm is nice because it provably works for any metric

space. Note that when k is relatively small compared to |X | = n, this works well, taking time

Θ(kn). However, when k = Ω(n), then this algorithm takes quadratic time, Θ(n2). In pseudo-code,

we have the following algorithm.

Farthest-First Traversal Algorithm.

Choose any z ∈ X and initialize T1 = {z}
For i = 1, 2, 3, . . . , k − 1 :

z = arg maxx∈X d(x, Ti)

Ti+1 ← Ti ∪ {z}
Output T ← Tk.

In each step, we added the farthest point in X to the current set of centers. Notice that we never

add the same point twice because d(x, T) = 0 if x ∈ T by definition.

As an aside, this traversal actually has other uses in geometric algorithms, and you can prove some

nice properties about it. Moreover, it can be used to initialize other algorithms. In fact, some k-

means implementations first do the Farthest-First Traversal to get a good candidate set of k centers.

Then, local heuristics are used to improve the clustering quality.

3

Analysis. The time of the Farthest-First Traversal Algorithm is O(kn) when n = |X |. In each

step, we needed to find the farthest point in X from the current set of clusters. Naively this would

take O(n) time for each point in the current set of centers, leading to an overall running time of

k ·O(kn). However, we can avoid some redundant work. Assume we have the distances d(x, Ti) for

all x ∈ X . The maximum such distance tells us which point to add. Furthermore, we can update

for Ti+1 = Ti ∪ {z} using the identity

d(x, Ti+1) = min{d(x, z), d(x, Ti)}.

In the ‘convenient notation’ from above, it takes O(n) time to compute XTi+1 when you know XTi .

So, we only update O(n) distances at each of the k steps, and we can find the farthest point.

We prove that the cost of this algorithm’s solution is at most a factor of two from the optimal. We use

T ∗ to denote the optimal set of center. In other words, T ∗ is the true minimizer of cost(T) = ‖XT ‖∞
over all sets T ⊆ X with |T | = k.

Theorem 1. If T is the solution output by the Farthest-First Traversal Algorithm, and T ∗ is the

optimal solution, then

cost(T) ≤ 2 · cost(T ∗)

Proof. Let

r = cost(T) = max
x∈X

d(x, T)

be the cost of T , and let x be a the point achieving this maximum. Then, consider T ∪ {x}, which

is a set of k + 1 points, and which has the property that every pair of points has distance at least r

by the construction of T . By the pigeonhole principle, using that |T ∗| = k, some two points in

T ∪ {x} must have the same closest point in T ∗. Therefore, as these two points have distance ≥ r,

the distance of one of these points to T ∗ must be at least r/2. In other words,

cost(T ∗) ≥ r/2 =
1

2
cost(T),

which is what we wanted to show.

Perhaps surprisingly, it is NP-Hard to do better. More precisely, for any constant ε > 0, it is

NP-Hard to find a k-center solution that is a (2− ε) approximation algorithm in the worst-case.

2.2 Second Proof

We also provide a second proof of the above theorem, which has a slightly different flavor.

Alternative Proof of Theorem 1. Recall that a set of centers T defines a clustering C by associating

each point in X with its closest center. Let C∗ be the optimal clustering based on T ∗ the optimal

set of centers. If every cluster in C∗ contains exactly one point in T , then the claim follows, because

the distance to the center in T is at most twice the distance to the center in T ∗ by the triangle

inequality. To see this, you can go from any x to c∗ ∈ T ∗ to c ∈ T , since

d(x, c) ≤ d(x, c∗) + d(c, c∗) = d(x, T ∗) + d(c, T ∗) ≤ 2 · cost(T ∗).

Otherwise, by the pigeonhole principle, there must be two centers c, c′ ∈ T that are both in the

same cluster in C∗, with center c∗ ∈ T ∗. Assume WLOG that c was added to T before c′ was added

by the Farther First Traversal Algorithm. For notation, say that c was added in step i so that

4

Ti+1 = Ti ∪ {c′} and c ∈ Ti already. Since the algorithm always adds the furthest point, we have

that

cost(T) ≤ cost(Ti) = d(c′, Ti) ≤ d(c, c′) ≤ d(c, c∗) + d(c′, c∗) ≤ 2 · cost(T ∗).

3 Clustering Real Data: Speed, Filtering, and Outliers

For large datasets, clustering algorithms must be very efficient. An integral component of the running

time comes from evaluating a distance function on pairs of points. To optimize an algorithm,

we should reduce both the number of pairwise comparisons and the time it takes to perform a

comparison. To this end, many filtering methods have been proposed, such as Canopy Clustering by

McCallum, Nigam, and Ungar [MNU00] and Clustering Using Representatives (CURE), by Guha,

Rastogi, and Shim [GRS98]. Another way to filter is to apply a hash function to the data and only

compare points in the same hash bucket. LSH is also a good filtering method.

Filtering methods can be very effective when the dataset is comprised of underlying clusters that

are separated in the metric space. In this case, we say that the dataset is clusterable, and for-

mal definitions of clusterability use a definition of separation [ABDLS13, BLG14]. The simplest

assumption may be that points in different clusters are strictly farther apart than same-cluster

points. This can be in terms of a single scale (e.g., distance at most r vs. distance at least 2r)

or a more global criteria (e.g., misclassifying any point leads to a huge increase in the objective

value) [ABC+15, BBG13, MMV14].

In real datasets, assumptions of separability or clusterability may be violated. This could be due

to imprecise measurements or to noise in the data collection process. In these cases, it becomes

important to understand how the output of a clustering algorithm changes if adversarial points, or

outliers, are added to the dataset [ABDLS13, BLG14]. From a theoretical point of view, the question

is whether algorithms still have good guarantees in the presence of outliers. Fortunately, in many

cases, the non-outlier analysis will still hold even in the presence of outliers [ABDLS13, BLG14].

For example, there exist algorithms that provide a good approximation for the optimal k-center

clustering even with many outliers [MKC+15].

3.1 Questions to Ponder

Although we don’t have more homework problems, I want to list a set of questions to check your

understanding and explore the topics in this lecture.

1. Design a dataset where the single-linkage hierarchical clustering algorithm will iteratively build

one large cluster by merging a singleton into the larger cluster at every step (so the eventual

dendrogram is a depth n − 1 binary tree when there are n input points). For this dataset,

what results are produced by average-linkage and complete-linkage?

2. One issue for hierarchical clustering in practice is that it can be prohibitively slow. Determine

the running times for the three linkage-based algorithms presented above. One natural idea

to speed up the algorithm is to use ideas from LSH to merge approximately similar clusters

at every step, which would reduce the running time. How would you do this? How would you

analyze the performance compared to computing the exact closest pair of clusters to merge?

3. Design a dataset where k-center and k-means will have (i) the same optimal clustering, or (ii)

a very different clustering. You can choose a dataset S ⊆ Rd and use the Euclidean distance

5

to measure distances.

4. Explain why the 2-approximation for k-center does not lead to any constant factor approxi-

mation for k-means, even for real vectors and Euclidean distance.

References

[ABC+15] Pranjal Awasthi, Afonso S Bandeira, Moses Charikar, Ravishankar Krishnaswamy,

Soledad Villar, and Rachel Ward. Relax, no need to round: Integrality of cluster-

ing formulations. In Proceedings of the 2015 Conference on Innovations in Theoretical

Computer Science, pages 191–200. ACM, 2015.

[ABDLS13] Margareta Ackerman, Shai Ben-David, David Loker, and Sivan Sabato. Clustering

Oligarchies. In AISTATS, 2013.

[BBG13] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Clustering Under Approxi-

mation Stability. Journal of the ACM (JACM), 60(2):8, 2013.

[BLG14] Maria-Florina Balcan, Yingyu Liang, and Pramod Gupta. Robust Hierarchical Clus-

tering. Journal of Machine Learning Research, 15(1):3831–3871, 2014.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical

Learning, volume 1. Springer series in statistics New York, 2001.

[Gon85] Teofilo F Gonzalez. Clustering to Minimize the Maximum Intercluster Distance. The-

oretical Computer Science, 38:293–306, 1985.

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An Efficient Clustering

Algorithm for Large Databases. In ACM Sigmod Record, volume 27, pages 73–84.

ACM, 1998.

[HMMR15] Christian Hennig, Marina Meila, Fionn Murtagh, and Roberto Rocci. Handbook of

Cluster Analysis. CRC Press, 2015.

[KR09] Leonard Kaufman and Peter J Rousseeuw. Finding Groups in Data: An Introduction

to Cluster Analysis, volume 344. John Wiley & Sons, 2009.

[Mac67] J. Macqueen. Some methods for classification and analysis of multivariate observations.

In Proc. 5th Berkeley Symp. Mathematical Statist. Probability, pages 281–297, 1967.

[MKC+15] Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q Weinberger, and Benjamin

Moseley. Fast Distributed k-center Clustering with Outliers on Massive Data. In NIPS,

2015.

[MMV14] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu–Linial

Stable Instances of Max Cut and Minimum Multiway Cut. In Proceedings of the twenty-

fifth annual ACM-SIAM symposium on Discrete algorithms, pages 890–906. SIAM, 2014.

[MNU00] Andrew McCallum, Kamal Nigam, and Lyle H Ungar. Efficient clustering of high-

dimensional data sets with application to reference matching. In SIGKDD, pages 169–

178. ACM, 2000.

[Ste56] H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci,

1:801–804, 1956.

6

