
Algorithms for Big Data Fall 2020

Lecture 04 & 05 — October 9 & 12, 2020

Prof. Cyrus Rashtchian Topics: Approximate Counting

Overview. In the last few lectures, we surveyed the topics for this whole course, reviewed

some probability theory, discussed various complexity measures for algorithms. Today we

will provide our first sketching result: Robert Morris’s method of counting large numbers

in a small register [Mor78].

1 Approximate Counting

We will now discuss our first detailed example of a sketching algorithm. In the following,

we discuss a problem first studied by Robert Morris [Mor78]. This is essentially the first

streaming paper, from 1978, way before big data was a thing. The motivation for him was

to understand space-bounded devices (back when space/memory was expensive).

Problem. Design an algorithm that monitors a sequence of events and upon request

can output (an estimate of) the number of events thus far. More formally, create a data

structure that maintains a single integer n and supports the following operations.

• init(); sets n← 0

• update(); increments n← n+ 1

• query(); outputs n or an estimate of n

A trivial algorithm stores n as a sequence of dlog ne = O(log n) bits (a counter).

Question. Can you solve this problem using fewer than log n bits??

Nope. If we want query(); to return the exact value of n, this is the best we can do.

Suppose for some such algorithm, we use f(n) bits to store the integer n. There are 2f(n)

configurations for these bits. In order for the algorithm to be able to store the exact value

of all integers up to n, the number of configurations must be greater than or equal to the

number n. Hence,

2f(n) ≥ n⇒ f(n) ≥ log n.

Approximate Solution. The goal is to use much less space than O(log n), and so we

must instead answer query(); with some estimate ñ of n. We would like this ñ to satisfy

Pr(|ñ− n| > εn) < δ, (1)

1

for some 0 < ε, δ < 1 that are given to the algorithm up front. For example, get the answer

to a factor of ε = 1/10 with probability 90%.

Morris’s algorithm provides such an estimator for some ε, δ that we will analyze shortly.

We assume the algorithm has a perfect source of randomness. Then, the algorithm works

as follows:

• init(); sets X ← 0

• update(); increments X with probability 2−X

• query(); outputs ñ = 2X − 1

Intuitively, the variable X is attempting to store a value that is approximately log2 n. Before

giving a rigorous analysis in Section 2, we first give a probability review.

2 Analysis of Morris’s Algorithm

Let Xn denote X in Morris’s algorithm after n updates. Let ñ = 2Xn − 1 be the output.

We first analyze the expectation, then the variance, and then use the concentration bounds

from above to provide the overall analysis.

Claim 1. For Morris’s algorithm, E2Xn = n+ 1.

Proof. We will prove by induction. Consider the base case where n = 0. We have initialized

X ← 0 and have yet to increment it. Thus, Xn = 0, and E2Xn = n+ 1. Now suppose that

E2Xn = n+ 1 for some fixed n.

We have

E2Xn+1 =

∞∑
j=0

Pr(Xn = j) · E(2Xn+1 | Xn = j)

=
∞∑
j=0

Pr(Xn = j) ·
(

2j
(

1− 1

2j

)
+

1

2j
· 2j+1

)

=
∞∑
j=0

Pr(Xn = j)2j +
∞∑
j=0

Pr(Xn = j)

= E2Xn + 1

= (n+ 1) + 1.

This completes the inductive step.

It is now clear why we output our estimate of n as ñ = 2X − 1: it is an unbiased estimator

of n. Moreover, since X ≈ log n, the expected amount of space we use is O(log log n).

2

In order to show (1) however, we will also control on the variance of our estimator. This is

because, by Chebyshev’s inequality,

Pr(|ñ− n| > εn) <
1

ε2n2
· E(ñ− n)2 =

1

ε2n2
· E(2Xn − 1− n)2.

When we expand the above square, we find that we need to control E22Xn . The proof of

the following claim is by induction, similar to that of Claim 1.

Claim 2. For Morris’s algorithm, we have

E22Xn =
3

2
n2 +

3

2
n+ 1. (2)

Proof. We again prove this by induction. It is clearly true for n = 0. Then

E22Xn+1 =
∞∑
j=0

Pr(2Xn = j) · E(22Xn+1 | 2Xn = j)

=
∞∑
j=0

Pr(2Xn = j) ·
(

1

j
· 4j2 +

(
1− 1

j

)
· j2
)

=

∞∑
j=0

Pr(2Xn = j) · (j2 + 3j)

= E22Xn + 3 · E2Xn

=

(
3

2
n2 +

3

2
n+ 1

)
+ (3n+ 3)

=
3

2
(n+ 1)2 +

3

2
(n+ 1) + 1

This completes the inductive step.

Bounding the failure probability. Now note Var[Z] in general is equal to EZ2−(EZ)2.

Also, Var[2Xn − 1] = Var[2Xn]. These together imply that

Var[2Xn] = E[22Xn]− (E[22Xn])2 =
3

2
n2 +

3

2
n+ 1− (n+ 1)2 =

1

2
n2 − 1

2
n <

1

2
n2

and thus

Pr(|ñ− n| > εn) <
1

ε2n2
· n

2

2
=

1

2ε2
,

which is not particularly meaningful since the right hand side is only smaller than 1 when

ε > 1/
√

2, and otherwise it says nothing. But we really want it to work for any ε.

2.1 Morris+

To decrease the failure probability of Morris’s basic algorithm, we instantiate s independent

copies of Morris’s algorithm and average their outputs. That is, we obtain independent

3

estimators ñ1, . . . , ñs from independent instantiations of Morris’s algorithm, and our output

to a query is

ñ+ =
1

s
·

s∑
i=1

ñi

Since each ñi is an unbiased estimator of n, so is their average. Furthermore, since variances

of independent random variables add, and multiplying a random variable by some constant

c = 1/s causes the variance to be multiplied by c2, the right hand side of (2) becomes

Pr(|ñ+ − n| > εn) <
1

2sε2
< δ

for s = 1/(2ε2δ) = Θ(1/(ε2δ)). This is pretty good, but we can do even better.

2.2 Morris++

There is a simple technique to reduce the dependence on the failure probability δ from 1/δ

down to log(1/δ). This method is known as a median-of-means estimator. The technique

is as follows.

We run t instantiations of Morris+, which we denote ñ+1 , ñ
+
2 , . . . ñ

+
t . For each, we will

achieve failure probability 1
3 by taking the mean of s = Θ(1/ε2) Morris estimators. We

then output the median estimate from all the t Morris+ instantiations.

ñ++ = median(ñ+1 , ñ
+
2 , . . . ñ

+
t).

We can calculate the expected space usage. Each Morris run takes space O(log log n) in

expectation. Each Morris+ run uses s ≈ 1/ε2 copies of Morris, leading to space roughly

log log(n)/ε2 for each. We will see shortly that there are t ≈ log(1/δ) copies of Morris+ in

the overall Morris++ algorithm. Therefore, we have that the expected space of Morris++

will roughly be

s · t · log log n ' log log n

ε2
· log(1/δ).

Analysis. Say that the ith Morris+ estimate succeeds if |ñ+ − n| < εn, and otherwise

it fails.

The expected number of Morris+ instantiations that succeed is at least 2t/3. For the median

to be a bad estimate, less than half the Morris+ instantiations can succeed (or more than

half must fail). This implies that number of succeeding instantiations deviated from its

expectation by at least t/6.

To analyze Morris++, we define the following t indicator variables:

Yi =

{
1, if the i-th Morris+ instantiation succeeds.

0, otherwise.

4

Then by the Chernoff bound,

Pr

(
t∑

i=1

Yi ≤
t

2

)
≤ Pr

(∣∣∣∣∣
t∑

i=1

Yi − E
t∑

i=1

Yi

∣∣∣∣∣ ≥ t

6

)
≤ 2e−ct < δ,

for a constant c, where c = 1/48 seems to work. The final inequality “< δ” holds by setting

the number of estimators to be t = Θ(log(1/δ)).

This implies that |ñ++ − n| < εn with probability at least 1− δ, as desired.

Overall space complexity. Note the space is a ranadom variable. We will not show it

here, but one can show that the total space complexity is, with probability 1− δ, at most

O(ε−2 log(1/δ)(log log(n/(εδ))))

bits. In particular, for constant ε, δ (say each 1/100), the total space complexity isO(log log n)

with constant probability. This is exponentially better than the log n space achieved by

storing a counter.

An improvement. One issue with the above is that the space is Ω(ε−2 log log n) for

(1 + ε)-approximation, but the obvious lower bound is only

O(log(log1+ε n)) = O(log(1/ε) + log log n).

This can actually be achieved. Instead of incrementing the counter with probability 1/2X ,

we do it with probability 1/(1 + a)X and choose a > 0 appropriately. We leave it to the

reader as an exercise to find the appropriate value of a and to figure out how to answer

queries.

References

[Mor78] Robert Morris. Counting large numbers of events in small registers. Commun.

ACM, 21(10):840–842, 10 1978.

5

