
Algorithms for Big Data Fall 2020

Lecture 06 & 07 — October 14 & 16, 2020

Prof. Cyrus Rashtchian Topics: Distinct Elements

Overview. In the last lecture, we considered Morris’ algorithm for approximate counting

with small space. The main idea was to use multiple estimators to improve the estimation:

First the mean in Morris+, and then the median-of-means in Morris++.

In this lecture, we focus on another streaming problem – counting distinct elements in a

stream (the distinct elements problem). For example, how many different hashtags were

used on Instagram last year? Or how many different people visited a certain website in a

given time frame? For these problem, we don’t need exact answers. The approximation

algorithms will provide another example of similar ideas, and it will hopefully cement the

techniques that may be useful for other problems. We use the notation [n] = {1, 2, . . . , n}.
We start with a brief review of hash functions.

1 k-wise independent hash functions

We start with two motivating question.

For a random function h : [a] → [b], the probability that h(i) = j is 1/b for all i, j. What

about h(i) = j and h(i′) = j′? When is this equal to (1/b)2 for i 6= i′ and any j, j′?

How much space does it take to store h? The total number of possible functions is ba. So

it takes O(a log b) bits to store h. We need to store h(i) for each i ∈ [a]. Can we do better?

First, we need to understand pseudorandom hash functions. We will use k-wise indepen-

dent hash functions. We provide one example. See Wikipedia for many other implemen-

tations (that are faster in practice and actually used in common libraries).

Definition 1. A family H of functions mapping [a] into [b] is k-wise independent iff for

all distinct i1, . . . , ik ∈ [a] and for all j1, . . . , jk ∈ [b],

Pr
h∈H

(h(i1) = j1 ∧ · · · ∧ h(ik) = jk) =
1

bk
.

Note that we can store h ∈ H in memory with log2 |H| bits.

One example of such a family H is the set of all functions mapping [a] to [b]. Then |H| = ba,

and so lg |H| = a lg b.

Perhaps the most important/common case is when k = 2, and this is known as a pairwise

independent set of random variables.

1

1.1 Example

A nice example is due to Carter and Wegman [2], where H is the set of all degree-(k − 1)

polynomials over Fq such that a = b = q. Then |H| = qk, and so lg |H| = k lg q. This can be

much better when k is small (for example, k = 2).

It’s a nice exercise to prove that this example has the desired properties.

Claim 2. Let H be the set of all degree-(k − 1) polynomials over Fq such that a = b = q.

Then, H is k-wise independent.

Proof. Exercise for Homework 2.

Having seen these examples, we will just assume that we have access to some 2-wise inde-

pendent hash families, which will let us store in lg n bits.

1.2 Pairwise Independence is Great

We observe that pairwise independence suffices to get the nice additive property of purely

independent random variables.

Claim 3. Let Y1, . . . , Yn be pairwise independent random variables. Then

Var

[
n∑
i=1

Yi

]
=

n∑
i=1

Var[Yi].

Proof. Exercise for Homework 2.

2 Counting Distinct Elements in a Stream

The input to the algorithm will be stream of integers i1, i2, i3, . . . , im ∈ {1, . . . , n}. We want

our query() operation to approximate the number of distinct integers in the stream.

We can exactly solve this this in O(min{m lg n, n}) bits of memory, but it turns out (though

we will not prove this in lecture) that this is essentially as good as we can get. More

precisely, we need linear memory if we don’t return an answer that is approximate and have

an algorithm that is randomized.

Let’s say that the true number of distinct elements is d and we output an approximation d̃.

More precisely, we want to output some answer d̃ such that Pr(|d̃− d| > εd) < δ. As usual,

the ε is the approximation factor and the δ is the failure probability.

Our goal is to eventually use space O
(
log(1/δ)
ε2

)
.

The first work to achieve this was by Flajolet and Martin in 1985 [1]. We will do something

similar, but not quite the same. We call our algorithms ‘FM’ because of their names. The

analysis presented here is similar to the algorithm due to Alon, Matias, and Szegedy [3].

2

Idealized Solution. We will start with an idealized solution that uses real numbers – and

therefore requires infinite memory! But, computers only have finite precision... However,

let’s pretend that the real numbers don’t require infinite memory for now, because the

non-idealized solution is similar in spirit.

2.1 Useful Expectation Lemma

We will need the following convenient expression for the expectation (the analogous state-

ment holds for discrete random variables too, that is, if X were discrete and taking non-

negative integer values, then EX =
∑∞

i=0 Pr[X ≥ i]).
Lemma 4. If X ∈ [0, 1] is a continuous random variable, then

E[X] =

∫ 1

0
Pr(X ≥ z) dz

Proof. We start with the definition and use a ‘dummy’ variable t to make it precise:

EX =

∫ 1

0
z · f(z) dz

=

∫ 1

0

(∫ z

0
1dt

)
· f(z) dz

=

∫ 1

0

∫ z

0
f(z) dtdz

=

∫ 1

0

∫ 1

t
f(z) dzdt [integral change explained below]

=

∫ 1

0
Pr(X ≥ t) dt

For the swapping of the integrals, notice that the area of integration can be equivalently

stated as follows:

{(t, z) | z ∈ [0, 1] and t ∈ [0, z]}
= {(t, z) | 0 ≤ t ≤ z ≤ 1}
= {(t, z) | t ∈ [0, 1] and z ∈ [t, 1]}

2.2 FM

Our basic algorithm (which we will call FM and subsequently upgrade into FM+ and

FM++ as in the previous lecture) proceeds as follows:

1. Choose a random hash function h : [n]→ [0, 1].

2. Maintain in memory the smallest hash we’ve seen so far: X = min
i∈stream

h(i).

3. query(): output 1
X − 1.

3

Intuition: Notice that h is fixed, so if we see a number i at any point in the stream, we

have that h(i) is the same. So, seeing i for the second or later time will not change X.

What do we know about X? For example, what is the expectation E[X] and variance? Let’s

focus on this, instead of the entire estimator. Then, we will analyze the output d̃ = 1
X − 1.

By linearity of expectation, showing that E[d̃] = d is equivalent to showing that E[X] = 1
d+1 .

We know that d is the true number of distinct elements. Informally, the random hash

function h along with the min can be viewed as randomly partitioning the interval [0, 1]

into bins of size ≈ 1/(d+ 1). With this in mind, we claim the following:

Claim 5. E[X] =
1

d+ 1
.

Proof. We start with the expectation equality in Lemma 4, and then we use the fact that

h is uniform is [0, 1] to work out the proof.

E[X] =

∫ 1

0
Pr(X ≥ z) dz

=

∫ 1

0
Pr(∀i ∈ stream, h(i) ≥ z) dz [because min is at least z]

=

∫ 1

0

∏
i∈stream

Pr(h(i) ≥ z) dz [by independence]

=

∫ 1

0
(1− z)d dz

=
1

d+ 1

We similarly bound E[X2], which gives us the variance Var[X] = E[X2]− (E[X])2.

Claim 6. E[X2] =
2

(d+ 1)(d+ 2)
.

Proof. The proof is similar to the previous claim (start with Lemma 4 for X2 this time).

E[X2] =

∫ 1

0
Pr(X2 ≥ z) dz

=

∫ 1

0
Pr(X ≥

√
z) dz

=

∫ 1

0
(1−

√
z)d dz [same idea as before]

= 2

∫ 1

0
ud(1− u) du [u = 1−

√
z]

= 2

∫ 1

0
ud − ud+1 du

= 2

(
1

d+ 1
− 1

d+ 2

)
=

2

(d+ 1)(d+ 2)

4

So we can bound the variance now (which we will use soon)

Var[X] =
2

(d+ 1)(d+ 2)
− 1

(d+ 1)2
=

d

(d+ 1)2(d+ 2)
<

1

(d+ 1)2
. (1)

Notice that Var[cX] = c2 Var[X] for any number c > 0 by properties of the variance (and

this holds for any random variable). We also used this last lecture.

2.3 FM+

We improve things by running the algorithm many times. Specifically, we can upgrade our

basic algorithm into FM+ by running it s = 1
ε2η

times in parallel to obtain X1, . . . , Xs.

Then query() should output

d̃+ =
1

1
s

∑s
i=1Xi

− 1.

Notice that by linearity of expectation, we have that the expectation is still d because the

expectation of 1
s

∑s
i=1Xi is equal to 1/(d+ 1).

We want to know how good this might be in practice, or in other words, what’s the proba-

bility of being far from the expectation? We can use Chebyshev’s inequality for this.

Claim 7. If s = 1
ε2η

, then

Pr

(∣∣∣∣∣1s
s∑
i=1

Xi −
1

d+ 1

∣∣∣∣∣ > ε

d+ 1

)
< η.

Proof. By Chebyshev’s inequality, we can bound this as

Pr

(∣∣∣∣∣1s
s∑
i=1

Xi −
1

d+ 1

∣∣∣∣∣ > ε

d+ 1

)
≤

Var[1s
∑

iXi]
ε2

(d+1)2

<
1

ε2s
= η,

where the final inequality used Eq. (1).

We can now get a linear scaling failure probability (that is, s depends linearly on 1/η). For

our estimate, we will output

d̃+ =
1

1
s

∑s
i=1Xi

− 1

and we claim that will be correct with good probability.

Claim 8. Let d̃+ = 1
1
s

∑s
i=1Xi

− 1 be the output of the algorithm. Then, we have

Pr
(∣∣∣d̃+ − d∣∣∣ ≥ 2εd

)
≤ η

assuming that 2
d < ε < 1

4 .

5

Proof. Exercise.

This gives us a linear dependence on the failure probability, but we want logarithmic.

Just like in the previous lecture, we will take the median of independent copies, and then

the final analysis will apply a Chernoff bound.

2.4 FM++

This is another example of the median-of-means idea.

We use t = O(ln(1/δ)) independent copies of FM+ to get a better algorithm. Precisely, we

will set η = 1/3 in the FM+ instantiations to get a success probability of at least 2/3 for

each. Then query() outputs the median across all FM+ estimates. We call this FM++,

denoted by

d̃++ = median(d̃+1 , d̃
+
2 , . . . , d̃

+
t),

where d̃+i is the ith FM+ instantiation for i = 1, 2, . . . , t.

The new space for FM++ is now O

(
1

ε2
lg

1

δ

)
. This does not include the space for h.

Say that the ith copy of FM+ succeeds if succeeds if |d̃+i − d| < εd, and otherwise it fails.

Claim 9. Let d̃++ be defined as above. Then, for t = O(log(1/δ)), we have

Pr(|d̃++ − d| ≥ εd) < δ

Proof. To analyze FM++, we define the following t indicator variables:

Yi =

{
1, if the i-th FM+ instantiation succeeds.

0, otherwise.

From Claim 8, we know that for all i we have that E[Yi] ≥ 2/3. In other words, we have

E
t∑
i=1

Yi ≥
2t

3

The median fails if more than half the copies fail. Then by the Chernoff bound,

Pr

(
t∑
i=1

Yi ≤
t

2

)
≤ Pr

(∣∣∣∣∣
t∑
i=1

Yi − E
t∑
i=1

Yi

∣∣∣∣∣ ≥ t

6

)
≤ 2e−ct < δ,

for a constant c, where c = 1/48 seems to work. The final inequality “< δ” holds by setting

the number of estimators to be t = Θ(log(1/δ)).

This implies that |d̃++− d| < εd with probability at least 1− δ, as desired. In other words,

because we set t appropriately, we get that this fails with probability e− ln(1/δ) = δ

6

References

[1] Philippe Flajolet, G. Nigel Martin. Probabilistic Counting Algorithms for Data Base

Applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

[2] J. Lawrence Carter, Mark N. Wegman. Universal Classes of Hash Functions. Proceed-

ings of the Ninth Annual ACM Symposium on Theory of Computing, pp. 106–112,

1997.

[3] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the

Frequency Moments. Proceedings of the Twenty-Eighth Annual ACM Symposium on

Theory of Computing, pp. 20–29, 1996.

7

