
Algorithms for Big Data - CSE 291 F00 
 

❖ Instructor: Cyrus Rashtchian (personal website) 
❖ Fall 2020 
❖ MWF 11a – 11:50a 
❖ Zoom Meeting ID: 973 3213 4888   Password: bigdata 
❖ Course Website: http://madscience.ucsd.edu/bigdata.html 

 
Description: This is an advanced algorithms course. Many data-driven areas (computer vision, AR/VR, 
recommender systems, computational biology) rely on probabilistic and approximation algorithms to 
overcome the burden of massive datasets. This course explores a foundational view of these techniques 
by analyzing them through a geometric lens. The first two weeks will review linear algebra (normed 
spaces, orthogonality, random matrices) and randomized algorithms (approximation guarantees, 
concentration inequalities). Then, we dive into designing and analyzing algorithms for big data. The main 
topics include sampling/sketching, dimensionality reduction, clustering, nearest neighbor search, and 
distributed models. Throughout the course, we will discuss motivating applications and current research 
trends, such as adversarial robustness, explainable AI, and learned embeddings. 
 
Topics: We will cover six main vignettes (each 3-5 classes): 

1. Introduction, Probability Review, Linear Algebra Reminder 

2. Sketching / Streaming Approximation Algorithms for Big Data 

3. Dimensionality Reduction and Metric Embeddings 

4. Approximate Nearest Neighbor Search and Locality Sensitive Hashing 

5. Clustering, Objectives, and Explainable Clustering 

6. Special Topics: Distributed Algorithms, MapReduce, Deep Learning, Robustness 

Grading: Throughout the course, we will have 5-6 problem sets, and a final project (no exams). The 

problems sets will have a mixture of theory and implementation questions. The project will be 

completed in groups of 2-3, and the goal is to take on a research-level investigation (theoretical or 

empirical or a mixture of both). 

Required Knowledge: Intermediate understanding of algorithms, linear algebra, and probability theory. 

Mathematical maturity is a must: the class contains theoretical ideas, and you are expected to be able to 

read and write formal mathematical proofs. Exposure to graduate randomized algorithms is a plus. 

Recommended Preparation: Review algorithmic ideas (data structures, hashing, binary search), linear 

algebra fundamentals (Euclidean distance, Manhattan distance, inner products, cosine similarity), and 

probability fundamentals (expectation, variance, independence, Markov's inequality). 

Supplementary Reading: There is no official textbook for the course, but I will provide detailed lecture 
notes for all material. The following references also contain parts of the material that will be covered: 
 

❖ Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, and Jeff Ullman. 
Online copy available at http://i.stanford.edu/~ullman/mmdsn.html 

❖ Foundations of Data Science by Avrim Blum, John Hopcroft, and Ravindran Kannan. 
Online copy available at https://www.cs.cornell.edu/jeh/book.pdf 

https://sites.google.com/site/cyrusrashtchian/
http://madscience.ucsd.edu/bigdata.html
http://i.stanford.edu/~ullman/mmdsn.html
https://www.cs.cornell.edu/jeh/book.pdf


Course Expectations 
 

Course Scope: The course will be mostly theoretically, but students should not shy away from working 

on empirical aspects of the material. For example, the final project may be an entirely 

practical/empirical undertaking. Algorithms can be developed that exploit everything from software 

libraries to specific architectures to dataset properties. All of this is important and relevant for modern 

data science. The problem sets will have a mixture of easier and harder theoretical questions, and at 

least one implementation question.  

Evaluation: There will be 3 problem sets and a final project (no exams). The problems sets will have a 

mixture of theory and implementation questions. The project will be completed in groups of 1-3, and 

the goal is to take on a research-level investigation (theoretical or empirical or a mixture of both). The 

grades will be based 50% on the homework and 50% on the final project, where the final project itself 

will have the following grading breakdown: 

✓ 5% of the final grade based on project proposal (due 10/30),  

✓ 10% based on the progress report (due 11/20),  

✓ 10% based on the presentation (on 12/7 or 12/9) 

✓ 25% based on the project report (due 12/11). 

Homework Grading: Each problem set will consist of several questions, where the students will be asked 
to solve a subset of questions (for example, complete 2 of 3 homework problems). The intention is that 
the students will choose problems to their liking, that fit their background. For theory questions, the 
requirement is always to provide a formal argument and proof (see below for writing up). For 
implementation questions, the requirement is to implement the indicated algorithm, and demonstrate 
certain properties of the algorithm. The results should be given both as pseudo-code and with 
graphs/plots to demonstrate different trade-offs (for example, time/memory versus accuracy). You must 
clearly identify yourselves at the top of each homework, and you must make it clear which questions 
you are answering. It is ideal and preferred if you type up the solutions in Latex (see below for details). 
 
Writing up solutions: You must produce precise and formal proofs. The goal of the class, in part, is for 
you to learn to reason about algorithms, precisely describe them, and formally prove claims about their 
correctness and performance. Hence, it is important that you write up your assignments clearly, 
precisely, and concisely. Legibility of your write-up will be an important factor in its grading. When 
writing up (algorithmic) solutions, keep in mind the following: 

• The best way for you to convey an algorithm is by using plain English description. A worked 
example can also help; but revert to pseudocode only if necessary. Generally, give enough 
details to clearly present your solution, but not so many that the main ideas are obscured. 

• The analysis of the algorithm must include both 1) proof of correctness, and 2) formal upper 
bound on performance (usually runtime, but sometimes space as well). This is true for 
theoretical and implementation questions. 

• You are encouraged (but not required) to type up your solutions using LaTeX. Latex is the 
standard package for typesetting and formatting mathematically-rich content. A mini-course on 
LaTeX is available: http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf. Macros to 
format pseudocode are available at http://www.cs.dartmouth.edu/~thc/clrscode/ 

• Lectures will generally be at a slightly lower level of formalism, in the interest of time. 

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
http://www.cs.dartmouth.edu/~thc/clrscode/


Project Grading: The project can either be an in-depth exploration of a paper or a new research-level 
investigation. Overall, the final project does not need to be original to the level of a research 
publication, but the effort of the students should be clear. On the other hand, students are encouraged 
to work on projects that may turn into future publications at research venues. For theory projects, the 
goal is to explore the possibilities and limitations of known techniques (ideally improving known results 
and/or expanding knowledge to new regimes). For empirical projects, the goal is to study the efficacy 
and trade-offs of algorithms in specific settings (either on standard datasets or on compelling synthetic 
data distributions). The ideal outcome of a project consists of new insights and/or examples that shed 
light on previously studied problems. The following types of projects are encouraged: 
 

• Reading-based: read a few recent research papers on a concrete topic and summarize them. 

• Implementation-based: implement some of the algorithms from the class (or from other 
theoretical literature), and perhaps apply to your area of interest/expertise, using real-world 
datasets. One aspect of such projects must be comparison among a few algorithms. 

• Research-based: investigate a research topic on your own (e.g., develop an algorithm, and prove 
its properties; or prove an impossibility result). It may be more applied: e.g., perhaps in your 
area, certain theoretical algorithms can be modified to have even better performance, due to 
special properties of the datasets, etc. 

 
The topic of your project must be within the scope of Theoretical Computer Science, Data Science, or 
Machine Learning (please talk to me otherwise).  It is expected that there will be an algorithmic 
component. In particular, the focus is on algorithms with provable guarantees (for the implementation 
type, you may compare such theoretical guarantees with heuristics though).  
 
Late Policy: Everyone has a default 3 days of extension (fractions of a day are rounded up), over all the 
homeworks. Once you’ve used up the 3 days, late homeworks will be penalized at the rate of 10%, 
additively, per late day or part thereof (i.e. fractions of a day are rounded up), for up to 7 days. To allow 
us to distribute the solutions in a timely fashion, homeworks submitted more than 7 days after the 
deadline will not be accepted. Exceptions will be made only for exceptional unforeseen circumstances 
(e.g., serious illness), in which case you will need to provide some additional documentation (e.g., 
doctor’s note). You are strongly encouraged to start working on the homeworks early: some problems 
may require you to sit on the problem for a while before you get your “aha” moment. Starting early also 
gives you time to ask questions and make effective use of the office hours of the teaching staff. 
 
External Resources: Aim to solve the problems on your own, using simply the course lecture notes and 
standard resources (e.g., books on algorithms, probability theory, or linear algebra). In many cases, it 
will be possible to find solutions in papers or in other courses. If you use external resources to inform 
your solution, you must cite the relevant source. Moreover, you must provide a self-contained and 
complete solution to the homework problem. In other words, it is okay to look at other resources for 
inspiration, but all the writing must be in your own words. You must feel confident that what you hand 
in represents your current knowledge. Direct copying is not allowed. For the final project, a significant 
portion of the work (that is, the majority) should be based on original findings or original discussion.  
 
Group work: For homework, students may work in groups of size 1-3. You should hand in one 
assignment for each group. You must clearly list all students consulted during the completion of the 
assignment. For the project, you may work in groups of size 1-3. It is ideal to work in groups of size 2-3. 
The goal of the homework and projects is to collaborate and to learn how to excel at group work. 
 


