Matrix Queries for Solving Linear Algebra, Statistics, and Graph Problems

Cyrus Rashtchian UCSD 12/02/20

Joint work w/ David P. Woodruff, Peng Ye, Hanlin Zhu



 $n \times n$ 



Bounded entries and  $O(\log n)$  bit complexity  $\sim$ 

> Small space streaming algorithm  $(\# \text{queries}) \cdot O(\log n)$ 





Measure number of queries to solve a problem Randomized, adaptive, approximation algorithms Bounded entries and  $O(\log n)$  bit complexity  $\checkmark$ 

Small space streaming algorithm  $(\# \text{queries}) \cdot O(\log n)$ 



Measure number of queries to solve a problem Randomized, adaptive, approximation algorithms Bounded entries and  $O(\log n)$  bit complexity  $\checkmark$ 

Small space streaming algorithm  $(\# \text{queries}) \cdot O(\log n)$ 

Unifies previous models

- edge/degree queries
- sample random edge with  $O(\log n)$  queries

All of it can be implemented in the uMv model with negligible overhead

 $\boldsymbol{?}$ 

 $u^+$ 

Lots and lots of work on sublinear time algorithms for graph problems...

[Feige '04; Goldreich, Ron '04]

[Eden, Levi, Ron, Seshadhri '15; Eden, Ron, Seshadhri '18 ]

[Eden, Ron, Rosenbaum '19; Assadi, Kapralov, Khanna '19]

Unifies previous models

- edge/degree queries
- sample random edge with  $O(\log n)$  queries
- edge count queries

 $\mathbf{1}_A^{\top} M \mathbf{1}_B$ 

number of edges between  $A,B\subseteq V_G$ 



All of it can be implemented in the uMv model with negligible overhead

[Alon, Asodi '04; Angluin, Chen '06; Reyzin, Srivastava '07]

### Unifies previous models

- edge/degree queries
- sample random edge with  $O(\log n)$  queries
- edge count queries
- cut queries



All of it can be implemented in the uMv model with negligible overhead

 $\boldsymbol{v}$ 

 $u^{\top}$ 

[Rubinstein, Schramm, Weinberg '18]

### Unifies previous models

- edge/degree queries
- sample random edge with  $O(\log n)$  queries
- edge count queries
- cut queries
- (bipartite) independent set queries



[Beame, Har-Peled, Natarajan Ramamoorthy, R., Sinha '18] [Chen, Levi, Waingarten '19]



 $u^{+}$ 

Unifies previous models

Specializes other models

- edge/degree queries
- sample random edge with  $O(\log n)$  queries
- edge count queries
- cut queries
- (bipartite) independent set queries

Unifies previous models

- edge/degree queries
- sample random edge with  $O(\log n)$  queries
- edge count queries
- cut queries
- (bipartite) independent set queries

#### Specializes other models

Matrix vector queries



#### [Sun, Woodruff, Yang, Zhang '19]

Unifies previous models

- edge/degree queries
- sample random edge with  $O(\log n)$  queries
- edge count queries
- cut queries
- (bipartite) independent set queries

#### Specializes other models

- Matrix vector queries
- Linear sketching





Focus on uMv and edge-probe queries

**Permutation Matrices** 

Planted Clique

Other Results & Open Questions



Constant success probability

Assume binary matrix  $\{0,1\}^{n imes n}$ 

Assume n is even

Theorem: O(1) queries over  $\mathbb{R}$  $\Omega(n)$  queries over  $\mathbb{F}_2$ in uMv or Linear Sketching models

Test permutation over  ${\mathbb R}$  with O(1) queries

Algorithm:

Choose subset of  $\frac{n}{2}$  columns Check # ones Reject if not  $\frac{n}{2}$ Else, repeat



Test permutation over  ${\mathbb R}$  with O(1) queries

Algorithm:

Choose subset of  $\frac{n}{2}$  columns Check # ones Reject if not  $\frac{n}{2}$ Else, repeat

#### Run algorithm for rows & cols



Test permutation over  ${\mathbb R}$  with O(1) queries

Algorithm:

```
Choose subset of \frac{n}{2} columns
Check # ones
Reject if not \frac{n}{2}
Else, repeat
```

Claim: with const probability, see sum other than  $\frac{n}{2}$ 



Test permutation over  ${\mathbb R}$  with O(1) queries

Algorithm:

```
Choose subset of \frac{n}{2} columns
Check # ones
Reject if not \frac{n}{2}
Else, repeat
```

Claim: with const probability, see sum other than  $\frac{n}{2}$ 



Test permutation over  ${\mathbb R}$  with O(1) queries

Algorithm:

```
Choose subset of \frac{n}{2} columns
Check # ones
Reject if not \frac{n}{2}
Else, repeat
```

Claim: with const probability, see sum other than  $\frac{n}{2}$ 



Test permutation over  ${\mathbb R}$  with O(1) queries

### Permutation $\iff$ Perfect Matching

#### Same idea works for Doubly Stochastic Matrices

Test if a matrix is diagonal also O(1) queries (random vectors, zero diagonal)

Test permutation requires  $\Omega(n)$  queries over  $\mathbb{F}_2$ 

Proof sketch in the video, with animations

Idea: communication complexity

- reduce to disjointness (2-player)
- Alice & Bob build matrices based on their strings
- Using 3 x 3 gadgets  $\rightarrow$  XOR of matrices permutation iff disjoint

# Planted Clique

Random instance (null hypothesis) G(n,0.5)

Planted instance (alternate hypothesis)  $\ G(n,0.5,k)$ 



Edge Probe Prior Results

Theorem [Rácz, Schiffer '19]:  $\widetilde{\Theta}\left(\frac{n^2}{k^2}\right)$  edge-probe queries are necessary and sufficient

for detecting or finding a planted k-clique

#### Algorithm:

- 1. Sample  $\gg \frac{n \log n}{k}$  vertices uniformly at random; query all pairs
- 2. Check if there is a clique of size  $\geq 3\log n$  induced by sampled vertices
- 3. If so, claim there is a planted k-clique; otherwise, claim the graph is random

Recall: in G(n, 0.5) largest clique  $\leq (2 + o(1)) \log n$  w.h.p.

Edge Probe Prior Results

Theorem [Rácz, Schiffer '19]:  $\widetilde{\Theta}\left(rac{n^2}{k^2}
ight)$  edge-probe queries are necessary and sufficient

for detecting or finding a planted k-clique

#### Algorithm:

- 1. Sample  $\gg \frac{n \log n}{k}$  vertices uniformly at random
- 2. Check if there is a clique of size  $\geq 3\log n$
- 3. If so, claim there is a planted k-clique

Recall: in G(n,0.5) largest clique  $\leq (2+o(1))\log n$  w.h.p.



### Clique Decomposition

Provide an alternate proof of lower bound via communication complexity

Assign edges to Alice and Bob, decomposing graph into random subsets of k-cliques

**Lemma** [Conlon, Fox, Sudakov '12]: if  $k = o(\sqrt{n})$  then the complete n-graph contains  $\tilde{\Theta}\left(\frac{n^2}{k^2}\right)$  edge-disjoint k-cliques, covering  $\Omega(n^2)$  edges

Prior work: similar ideas for MAX-Clique, but we must preserve the distribution

[Halldórsson, Sun, Szegedy, Wang '12] [Braverman, Liu, Singh, Vinodchandran, Yang '18]

# Edge Probe Lower Bound

**Theorem:** if  $k = o(\sqrt{n})$ , then  $\Omega\left(\frac{n^2}{k^2}\right)$  edge-probe queries are necessary to detect planted k-clique with constant success probability

We prove a communication lower bound of  $\Omega\left(\frac{n^2}{k^2}\right)$  for solving a related "PC Game" Alice and Bob get matrices, where actual graph will be  $G = G_1 \oplus G_2$ Decide if graph random or planted k-clique with const. prob.

Reduce to UDISJ (planted clique iff sets intersect)

either unique index such that  $x_i = y_i = 1$ 

or one of 
$$x_i=0~~{
m or}~y_i=0~~orall~i$$

# UDISJ to PC Game

Use clique decomposition lemma  $K_k^1, K_k^2, \ldots, K_k^\ell$ 

Start with UDISJ instance, inputs  $\mathbf{x},\mathbf{y}\in\{0,1\}^\ell$  where  $\ell=\Theta(n^2/k^2)$ 

Alice and Bob detect planted clique on XOR of adj. matrices  $G=G_1\oplus G_2$ 

| Alice gets edges in $G_1^i$ and Bob gets edges in $G_2^i$ Randomly 4-color edges in $K_k^i$ | Claim: using this reduction:<br>not disjoint leads to $G(n, 0.5, k)$<br>disjoint leads to $G(n, 0.5)$ |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| • $x_i = 0 \implies$ add all edges in $K_k^i$ with colors 1 or 3 to $G_1^i$                 | 1010                                                                                                  |
| • $x_i = 1 \implies$ add all edges in $K_k^i$ with colors 1 or 2 to $G_1^i$                 | 1100                                                                                                  |
| • $\boldsymbol{y}_i = 0 \implies$ add all edges in $K_k^i$ with colors 1 or 4 to $G_2^i$    | 1001                                                                                                  |
| • $\boldsymbol{y}_i = 1 \implies$ add all edges in $K_k^i$ with colors 3 or 4 to $G_2^i$    | 0011                                                                                                  |

# UDISJ to PC Game

Start with UDISJ instance, inputs  $\mathbf{x},\mathbf{y}\in\{0,1\}^\ell$  where  $\ell=\Theta(n^2/k^2)$ 

Alice and Bob detect planted clique on XOR of adj. matrices  $G=G_1\oplus G_2$ 

Use clique decomposition lemma  $K_k^1, K_k^2, \dots, K_k^\ell$ 

Alice gets edges in  $G_1^i$  and Bob gets edges in  $G_2^i$ Randomly 4-color edges in  $K_k^i$ 

Claim: using this reduction: not disjoint leads to G(n, 0.5, k)disjoint leads to G(n, 0.5)

**Theorem:** if  $k = o(\sqrt{n})$ , then  $\Omega\left(\frac{n^2}{k^2}\right)$  edge-probe queries are necessary to detect planted k-clique with constant success probability

Also holds for  $\mathbb{F}_2$  linear sketching queries (but proof fails for uMv queries...)

# uMv and Linear Sketching Lower Bound

**Corollary:** if  $k = o(\sqrt{n})$ , then  $\tilde{\Omega}\left(\frac{n^2}{k^4}\right)$  uMv or linear sketching queries are necessary to detect planted k-clique with constant success probability

**Theorem:** if  $k = o(\sqrt{n})$ , then  $\Omega\left(\frac{n^2}{k^2}\right)$  bits necessary to solve the  $\binom{k}{2}$ -player planted k-clique communication game with constant success probability

Implies query lower bound via natural simulation

 $\Theta(k^2\log n)$  bits communication for each query  $\widetilde{\Omega}\left(rac{n^2}{k^4}
ight)$  queries are necessary for uMv or Linear Sketching

# Multi-party Communication LB

**Theorem:** if  $k = o(\sqrt{n})$ , then  $\Omega\left(\frac{n^2}{k^2}\right)$  bits necessary to solve the  $\binom{k}{2}$ -player planted k-clique communication game with constant success probability

Use standard direct sum framework for information complexity [BYJKS '04]

Combine ideas from distributed data processing inequality [Braverman, Garg, Ma, Nguyen, Woodruff '16]

Still use the clique decomposition lemma

But now each player gets at most one edge from each clique

Essentially multiplayer unique disjointness with appropriate input distribution

# Multi-party Communication LB

**Theorem:** if  $k = o(\sqrt{n})$ , then  $\Omega\left(\frac{n^2}{k^2}\right)$  bits necessary to solve the  $\binom{k}{2}$ -player planted k-clique communication game with constant success probability



Output: determine if there is a planted all ones row or not

Information lower bound:

comm  $\geq I(\mathbf{X}; \Pi(\mathbf{X}) \mid \text{not planted})$ 

 $\geq \sum_{i=1}^{\ell} I(\mathbf{X}_j; \Pi(\mathbf{X}) \mid \text{not planted}))$ 

 $|\geq \Omega(\ell) = \Omega(n^2/k^2)$ 

# Other results

| Linear Algebra Problems  |                                                                                               |             |  |
|--------------------------|-----------------------------------------------------------------------------------------------|-------------|--|
| Schatten $p$ -norm       | $\Omega(\sqrt{n})$ for $p\in[0,4),$ const. factor approx. over $\mathbb R$                    | Theorem 3.2 |  |
|                          | $\Omega(n^{1-2/p})$ for $p\geq 4,$ const. factor approx. over $\mathbb R$                     | Theorem 3.2 |  |
| Rank testing             | $\Omega(k^2)$ to distinguish rank $k$ vs. $k+1$ over $\mathbb{F}_p$                           | Theorem 3.3 |  |
|                          | $\Omega(n^{2-O(\varepsilon)})$ for $(1\pm\varepsilon)$ approx. over $\mathbb R,$ non-adaptive | Theorem 3.4 |  |
| Trace estimation         | $\Omega(n/\log n)$ and $O(n)$ for entries in $\{0, 1, 2, \dots, n^3\}$                        | Theorem 3.5 |  |
| Diagonal matrix          | O(1)                                                                                          | Theorem 3.6 |  |
| Symmetric matrix         | O(1)                                                                                          | Theorem 3.7 |  |
| Unitary matrix           | $\Omega(n/\log n)$ and $O(n)$ for randomized queries over $\mathbb C$                         | Theorem 3.8 |  |
|                          | $\Omega(n^2/\log n)$ for deterministic queries over $\mathbb C$                               | Theorem 3.9 |  |
| Statistics Problems      |                                                                                               |             |  |
| All ones column          | $\Omega(n/\log n)$ and $O(n)$ over $\mathbb R$                                                | Section 4.1 |  |
| Two identical columns    | $\Omega(n)$ and $O(n \log n)$ over $\mathbb{F}_2$                                             | Section 4.2 |  |
|                          | $O(n)$ over $\mathbb{R}$                                                                      | Theorem 4.3 |  |
| Column-wise majority     | $\Theta(n^2)$ over $\mathbb{F}_2$                                                             | Theorem 4.4 |  |
| Permutation matrix       | $O(1)$ over $\mathbb{R}$                                                                      | Theorem 4.5 |  |
|                          | $\Omega(n)$ over $\mathbb{F}_2$                                                               | Theorem 4.6 |  |
| Doubly stochastic matrix | $O(1)$ over $\mathbb{R}$                                                                      | Theorem 4.7 |  |
| Negative entry detection | $\Omega(n^2/\log n)$ over $\mathbb R$                                                         | Theorem 4.8 |  |
| Graph Problems           |                                                                                               |             |  |
| Triangle detection       | $\Omega(n^2/\log n)$                                                                          | Theorem 5.1 |  |
| Star graph               | $O(1)$ over $\mathbb R$                                                                       | Theorem 5.2 |  |

### Open Questions

- 1. Planted clique with uMv queries?  $\widetilde{O}\left(\frac{n^2}{k^2}\right)$  vs.  $\widetilde{\Omega}\left(\frac{n^2}{k^4}\right)$
- 2. Improve upon graph queries, e.g., triangle/clique approx. counting [Eden, Levi, Ron, Seshadhri '15; Assadi, Kapralov, Khanna '19]
- 3. Test whether matrix is PSD under eigenvalue assumptions [Bakshi, Chepurko, Javaram '20]
- 4. Generalize to higher rank measurement matrices, query returns  $\mathrm{trace}(U^TM)$
- 5. Generalize uMv to k-tensors with k query vectors (Quantum? Hypergraphs?)
- 6. More average-case reductions, e.g., stochastic block model [Brennan, Bresler '20; Brennan, Bresler, Huleihel '18]
- 7. Connections to fine-grained complexity

[Dell, Lapinkas '17; Dell, Lapiskas, Meeks '19]

Thanks!

### Cyrus Rashtchian

www.cyrusrashtchian.com

UCSD

ML blog: <u>ucsdml.github.io</u>

crashtchian@eng.ucsd.edu





# Diagonal Matrices

Test whether a matrix is diagonal with O(1) queries



Repeat many times

$$u^{\top}Mv \stackrel{?}{=} 0$$

# $egin{array}{c} u \,\,\, v \ \end{array}$ Choose random vectors such that diagonal always zero $egin{array}{c} (u_i v_i = 0) \ \end{array}$