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Vector Matrix Vector Queries

graph queries

u,v el -I Q

uw Mo
Measure number of queries to solve a problem
Randomized, adaptive, approximation algorithms

Small space streaming algorithm

Bounded entries and O(log n) bit complexity _— (#queries) - O(logn)



Vector Matrix Vector Queries

edge-probe query

u,v € F” -I Q

u Mo
Measure number of queries to solve a problem
Randomized, adaptive, approximation algorithms

STtell space streaming Q|gorifhm

Bounded entries and O(log n) bit complexity (#queries) - O(logn)



Vector Matrix Vector Queries

degree query

u,v € F” -I Q

u Mo
Measure number of queries to solve a problem
Randomized, adaptive, approximation algorithms

STtell space streaming Q|gorifhm

Bounded entries and O(log n) bit complexity (#queries) - O(log 1)
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Vector Matrix Vector Queries —-I

Unifies previous models

All of it can be implemented
in the uMv model
. sample random edge with O(log n) queries with negligible overhead

. edge/degree queries

Lots and lots of work on sublinear time algorithms for graph problems...

[Feige '04; Goldreich, Ron ‘04]

[Eden, Levi, Ron, Seshadhri 15; Eden, Ron, Seshadhri 18 ]

[Eden, Ron, Rosenbaum 19; Assadi, Kapralov, Khanna 19]
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Unifies previous models

edge/degree queries All of it can be implemented
in the uMv model
sample random edge with O(log n) queries e e e

edge count queries
1, M1p

number of edges between A, B C Vg

[Alon, Asodi '04; Angluin, Chen ‘06; Reyzin, Srivastava ‘07]
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Unifies previous models

edge/degree queries All of it can be implemented
in the uMv model
sample random edge with O(logn) queries il mel e sl evedthesd

edge count queries

cut queries

[Rubinstein, Schramm, Weinberg 18]
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Unifies previous models

edge/degree queries All of it can be implemented
in the uMv model
sample random edge with O(logn) queries N Ine s ligible e erhesd

edge count queries
cut queries

(bipartite) independent set queries

VS.

[Beame, Har-Peled, Natarajan Ramamoorthy, R, Sinha 18]
[Chen, Levi, Waingarten 19]



Vector Matrix Vector Queries

Unifies previous models Specializes other models
. edge/degree queries

. sample random edge with O(log n) queries

. edge count queries

- cut queries

(bipartite) independent set queries



Vector Matrix Vector Queries

Unifies previous models Specializes other models
edge/degree queries . Matrix vector queries

sample random edge with O(logn) queries
edge count queries
cut queries —
(bipartite) independent set queries
Mo

[Sun, Woodruff, Yang, Zhang 19]



Vector Matrix Vector Queries

Unifies previous models Specializes other models
. edge/degree queries . Matrix vector queries
. sample random edge with O(logn) queries . Linear sketching

. edge count queries
- cut queries

(bipartite) independent set queries

v ' vec(M)

v e F"



Agenda
Focus on uMy and edge-probe queries
Permutation Matrices
Planted Clique

Other Results & Open Questions



Permutation Watrices

Constant success probability

Assume binary matrix {O7 1}n><n

Assume 7 is even

Theorem: O(l) queries over IR

Q(n) queries over ]FQ

in uMv or Linear Sketching models




Permutation Watrices

Test permutation over IR with O(1) queries

Algorithm:

n
Choose subset of ) columns

Check # ones
Reject if not i

Else, repeat




Permutation Watrices

Run algorithm for rows & cols

”UZlA




Permutation Watrices

Not permutation

Al =

N[ 3

Claim: with const probability,

see sum other than g




Permutation Watrices

Not permutation

Al =

N[ 3

Claim: with const probability,

see sum other than g




Permutation Watrices

Not permutation

Claim: with const probability,

see sum other than g




Permutation Matrices

Permutation <—  Perfect Matching

Same idea works for Doubly Stochastic Matrices

Test if a matrix is diagonal also O(1) queries (random vectors, zero diagonal)



Permutation Matrices

Test permutation requires {2(n)queries over [y

Proof sketch in the video, with animations
|dea: communication complexity
. reduce to disjointness (2-player)

. Alice & Bob build matrices based on their strings

. Using 3 x 3 gadgets 2 XOR of matrices permutation iff disjoint



Planted Clique

Random instance (null hypothesis) G(?’L, 05)

Planted instance (alternate hypothesis) G(n, 05, k)

null: wh.p. max clique < 2 logn

determine null vs. alternate:
possible to detect k& > (2 +0(1))logn
unknown it polytime £ = o(y/n)
easy & efficient k> /n




Edge Probe Prior Results

?’L2

Theorem [Racz, Schiffer 19]: © (ﬁ) edge-probe queries are necessary and sufficient

for de’rec’ring or finding a p|on’reo| k—c|ique

Algorithm:

]
. Sample > nlogn

vertices urmcorm|y at random; query all pairs
0. Check if there is a clique of size > 3logn induced by sampled vertices
5. |t so, claim there is a planted k-clique; otherwise, claim the graph is random

Recall: in G(n,0.5) largest clique < (24 0(1))logn w.hp.




Edge Probe Prior Results

?7,2

Theorem [Racz, Schiffer 19]: 0 (k2

) edge-probe queries are necessary and sufficient

for deTec’ring or finding a |o|cm’reo| k—c|ique

100 logn
k




Clidue Pecomposition

Provide an alternate proof of lower bound via communication complexity

Assign edges to Alice and Bob, decomposing graph into random subsets of k-cliques

Lemma [Conlon, Fox, Sudakov 12]: it k = 0(\/5) then the comp|e’re n—groph
2

contains © (%) edge-disjoint k-cliques, covering Q(nz) edges

Prior work: similar ideas for MAX-Clique, but we must preserve the distribution

[Halldérsson, Sun, Szegedy, Wang 12]
[Braverman, Liu, Singh, Vinodchandran, Yang 18]



Edge Probe Lower Bound

p
Theorem: if k = o(ﬁ), then @ (Z—Z) edge—probe queries are necessary to
detect p|0n’reo| k—c|ique with constant success probabih’ry

n2

We prove a communication lower bound of Q (?) for solving a related "PC Game”
Alice and Bob get matrices, where actual graph will be G =G, @ Gs

Decide if graph random or planted k-clique with const. prob.

Reduce to UDIS]J (planted clique iff sets intersect)

either unique index such that z; = y; = 1

oroneof'aji:Ooryi:O V1



UP

(ST o PC Guawme

Start with UDIS) instance, inputs X,y € {0, 1}6 where ¢ = @(nQ/kz)

Alice and Bob detect planted clique on XOR of adj. matrices G = G; ® G

Use clique decomposition lemma K]%, K]%, e ,Kﬁ

Alice g

ets edges in Gi and Bob gets edges in Gé

Randomly 4-color edges in K}f‘c

add all edges in K with colors 1 or 3 to G
add all edges in K. with colors 1 or 2 to Gj

add all edges in K with colors 1 or 4 to G

add all edges in K with colors 3 or 4 to G

Claim: using this reduction:
not disjoint leads to G(n,0.5, k)
disjoint leads to G(n,0.5)

1010

1100

1001

0011




Theorem: it k£ = o(v/n), then @ i edge-probe queries are necessary to
k2

detect planted k-clique with constant success probability

Also holds for [F'5 linear sketching queries (but proof fails for uMv queries..)




2
it k = o(v/n), then @ (n—> uMv or linear sketching queries are

ka4

necessary to detect p|onJreo| k—c|ique with constant success probabih’ry

p
it k= o(yv/n), thenq (2—2) bits necessary to solve the (;)—pbyer

olanted k-cliqgue communication game with constant success probability

Implies query lower bound via natural simulation

@(k2 logn) bits communication for each query

2

Q (2—4) queries are necessary for uMv or Linear Sketching



2
it k= o(yv/n), thenq (2—2) bits necessary to solve the (’;)—pbyer

olanted k-cliqgue communication game with constant success probability

Use standard direct sum framework for information complexity [BYJKS '04]

Combine ideas from distributed data processing inequality [Braverman, Garg, Ma, Nguyen, Woodruff 16]
Still use the clique decomposition lemma

But now each player gets at most one edge from each clique

Essentially multiplayer unique disjointness with appropriate input distribution



Multi-party Communication LB

2
Theorem: if k= o(+/n), then (2—2) bits necessary to solve the (’;)—pbyer

p|0n’reo| k—c|ique communication game with constant success probabih’ry

Multiparty game (k) Output: determine if there is a

planted all ones row or not

Input
Information lower bound:
all ones Rondom row Xj
n2 prob 1/2 all ones comm > I(X;II(X) | not planted)
e (— prob 1/2 random
k? ¢
> Z I(X;; II(X) | not planted)
i=1
> Q) = Q(n?/k?)




Other results

Linear Algebra Problems

Schatten p-norm

Rank testing

Trace estimation
Diagonal matrix
Symmetric matrix

Unitary matrix

Statistics Problems
All ones column

Two identical columns

Column-wise majority

Permutation matrix

Doubly stochastic matrix
Negative entry detection
Graph Problems
Triangle detection

Star graph

Q(y/n) for p € [0,4), const. factor approx. over R

Q(n'=2/P) for p > 4, const. factor approx. over R

Q(k?) to distinguish rank k vs. k + 1 over F,

Q(n2=9©) for (1 +¢) approx. over R, non-adaptive

Q(n/logn) and O(n) for entries in {0,1,2,...,n3}

Q(n/logn) and O(n) for randomized queries over C

5 ; Bl ;
Q(n*/logn) for deterministic queries over C

Q(n/logn) and O(n) over R
Q(n) and O(nlogn) over Fa
O(n) over R

O(n?) over Fo

O(1) over R

Q(n) over Fo

O(1) over R

Q(n?/logn) over R

Q(n?/logn)

O(1) over R

Theorem 3.2
Theorem 3.2
Theorem 3.3
Theorem 3.4
Theorem 3.5
Theorem 3.6
Theorem 3.7
Theorem 3.8

Theorem 3.9

Section 4.1

Section 4.2

Theorem 4.3
Theorem 4.4
Theorem 4.5
Theorem 4.6
Theorem 4.7

Theorem 4.8

Theorem 5.1

Theorem 5.2



Open Questions

2 _ 2
1. Planted c|ique with uMv queries? 0, (%) vs. (%)

2.  Improve upon groph queries, e.g., Triong|e/c|ique approx. counting
[Eden, Levi, Ron, Seshadhri 15; Assadi, Kapralov, Khanna 19]

5. Test whether matrix is PSD under eigenvalue assumptions
[Bakshi, Chepurko, Jayaram "20]

4. Generalize to higher rank measurement matrices, query returns trace(UTM)
5. Generalize uMv to k-tensors with k query vectors (Quantum? Hypergraphs?)

6. More average-case reductions, e.g. stochastic block model

[Brennan, Bresler '20; Brennan, Bresler, Huleihel ‘18]

7. Connections to Fine—groined Comp|exi’ry
[Dell, Lapinkas 17; Dell, Lapiskas, Meeks 19]
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Diagonal Matrices

Test whether a matrix is diagonal with O(1) queries

Repeat many times
?
u' Mv =0
u v

Choose random vectors such that diagonal 0|W0ys zero (’U,i’Uz' — O)



