Data Science Through a Geometric Lens Fall 2019

Homework 2
Due: Wednesday 10/30/19, 5pm

e Solving 3 of the following 5 problems will lead to full credit. You may attempt more
than 3 problems, but the grading will be based on the 3 problems with the highest scores.

e Email the solutions to both the instructor and TA (emails listed on the course website).

e You may work in groups of size 1-3. If you do, please hand-in a single assignment with
everyone’s names on it. It is strongly encouraged to type up the solutions in Latex.

e If the question asks to prove something, you must write out a formal mathematical proof.

e If the question involves analyzing an algorithm, you must formally explain the time and/or
space usage, along with the approximation guarantees (when applicable).

e When you are asked to prove a bound, it suffices to prove it up to multiplicative constants,
i.e., using O(-), O(-), or Q(-) notation. No need to optimize (multiplicative) constants!

e You may use other resources, but you must cite them. If you use any external sources, you
still must provide a complete and self-contained proof/result for the homework solution.

1 Problem 1: Tales of different norms
(a) Prove that the following two relationships hold for any vector x € R™:
[2lloe < llzllz < V-2l and  flzfl2 < Jlzfli < V- [z

(b) Provide example vectors that satisfy each of the above four inequalities with an equality.

2 Problem 2: Bourgain for /;

The strategy of Bourgain’s embedding from Lecture 6 also works for ¢1. Prove there is an embedding
from any n-point metric space X = {z1,zs,...,2,} to k-dimensional ¢; with k& = O(log® n), which
we denote as the map f : X — RF, where f satisfies

d(z,y) < ||f(x) = f(W)lls < clog(n) - d(z,y),
for any z,y € X, for some constant ¢ > 0. Note that in the proof it suffices to show that
dm-d(z,y) < |[|f(z) — f(y)llL < mlog(n) - d(=,y),

for a constant ¢’ > 0 because you can divide the resulting vectors by ¢'m to get the desired bound
on the distortion.



3 Problem 3: Another view of Frechet

(a) Prove that Frechet’s embedding from Lecture 6 provides an isometric embedding from an
n-point metric space into n-dimensional £.,, which means that the distances are preserved

exactly: d(z,y) = || f(z) = f(¥)|loo-

(b) Improve the embedding from part (a) to only using n — 1 dimensions instead of n.

4 Problem 4: Good embeddings may or may not be possible

(a) Let C), denote the cycle graph: the vertices are {1,2,...,n}, and there are n total edges,
connecting ¢ and i+ 1 for ¢ € {1,2,...,n— 1}, and also connecting n and 1. The shortest path
metric d(i, j) on Cy, is the length of the shortest path in C), between vertices i, 5 € {1,2,...,n}.
Show that any embedding of the shortest path metric on C,, into R has distortion Q(n). In
other words, if f : {1,2,...,n} — R satisfies | f(i) — f(j)| > d(4, ) for all 1 < i,j < n, then
there must be some pair ¢/, ' with |f(i') — f(j')| > en - d(i’, j') for a constant ¢ > 0 (where ¢
does not depend on n).

Hint: Consider three vertices on the cycle separated by distances roughly n/3.
(b) A tree metric (X,d) is the shortest path metric on the vertices of a connected tree (that is,
d(x,y) is the length of the shortest path between vertices = and y).

Letting n = |X| > 2 be the number of nodes in the tree, prove that a tree metric can be
embedded with distortion 1 into (n — 1)-dimensional ¢;. In other words, show that there exists
a mapping f : X — R"™1 such that d(z,y) = || f(x) — f(y)||1 for every z,y € X.

Hint: Use induction on n with base case n = 2.

5 Problem 5: Implementing Dimensionality Reduction

Implement and test the Johnson-Lindenstrauss dimensionality reduction method from Lecture 5.

(a) Find a dataset of n > 100 points, either randomly generated or from a public repository (e.g.,
UCI, ScikitLearn, etc).

(b) Provide results (in a table or plot, clearly labeled) for the distortion of the projected points
versus the original points, as you increase the dimensionality of the embedded points.

(¢) For the same dataset and parameter settings, replace the normal distribution with +1 random
variables. How does the embedding change (better, worse, different, ...)?



