
Data Science Through a Geometric Lens Fall 2019

Homework 2

Due: Wednesday 10/30/19, 5pm

• Solving 3 of the following 5 problems will lead to full credit. You may attempt more

than 3 problems, but the grading will be based on the 3 problems with the highest scores.

• Email the solutions to both the instructor and TA (emails listed on the course website).

• You may work in groups of size 1-3. If you do, please hand-in a single assignment with

everyone’s names on it. It is strongly encouraged to type up the solutions in Latex.

• If the question asks to prove something, you must write out a formal mathematical proof.

• If the question involves analyzing an algorithm, you must formally explain the time and/or

space usage, along with the approximation guarantees (when applicable).

• When you are asked to prove a bound, it suffices to prove it up to multiplicative constants,

i.e., using O(·), Θ(·), or Ω(·) notation. No need to optimize (multiplicative) constants!

• You may use other resources, but you must cite them. If you use any external sources, you

still must provide a complete and self-contained proof/result for the homework solution.

1 Problem 1: Tales of different norms

(a) Prove that the following two relationships hold for any vector x ∈ Rn:

‖x‖∞ ≤ ‖x‖2 ≤
√
n · ‖x‖∞ and ‖x‖2 ≤ ‖x‖1 ≤

√
n · ‖x‖2.

(b) Provide example vectors that satisfy each of the above four inequalities with an equality.

2 Problem 2: Bourgain for `1

The strategy of Bourgain’s embedding from Lecture 6 also works for `1. Prove there is an embedding

from any n-point metric space X = {x1, x2, . . . , xn} to k-dimensional `1 with k = O(log2 n), which

we denote as the map f : X → Rk, where f satisfies

d(x, y) ≤ ‖f(x)− f(y)‖1 ≤ c log(n) · d(x, y),

for any x, y ∈ X , for some constant c > 0. Note that in the proof it suffices to show that

c′m · d(x, y) ≤ ‖f(x)− f(y)‖1 ≤ m log(n) · d(x, y),

for a constant c′ > 0 because you can divide the resulting vectors by c′m to get the desired bound

on the distortion.
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3 Problem 3: Another view of Frechet

(a) Prove that Frechet’s embedding from Lecture 6 provides an isometric embedding from an

n-point metric space into n-dimensional `∞, which means that the distances are preserved

exactly: d(x, y) = ‖f(x)− f(y)‖∞.

(b) Improve the embedding from part (a) to only using n− 1 dimensions instead of n.

4 Problem 4: Good embeddings may or may not be possible

(a) Let Cn denote the cycle graph: the vertices are {1, 2, . . . , n}, and there are n total edges,

connecting i and i+ 1 for i ∈ {1, 2, . . . , n− 1}, and also connecting n and 1. The shortest path

metric d(i, j) on Cn is the length of the shortest path in Cn between vertices i, j ∈ {1, 2, . . . , n}.
Show that any embedding of the shortest path metric on Cn into R has distortion Ω(n). In

other words, if f : {1, 2, . . . , n} → R satisfies |f(i) − f(j)| ≥ d(i, j) for all 1 ≤ i, j ≤ n, then

there must be some pair i′, j′ with |f(i′)− f(j′)| ≥ cn · d(i′, j′) for a constant c > 0 (where c

does not depend on n).

Hint: Consider three vertices on the cycle separated by distances roughly n/3.

(b) A tree metric (X, d) is the shortest path metric on the vertices of a connected tree (that is,

d(x, y) is the length of the shortest path between vertices x and y).

Letting n = |X| ≥ 2 be the number of nodes in the tree, prove that a tree metric can be

embedded with distortion 1 into (n−1)-dimensional `1. In other words, show that there exists

a mapping f : X → Rn−1 such that d(x, y) = ‖f(x)− f(y)‖1 for every x, y ∈ X.

Hint: Use induction on n with base case n = 2.

5 Problem 5: Implementing Dimensionality Reduction

Implement and test the Johnson-Lindenstrauss dimensionality reduction method from Lecture 5.

(a) Find a dataset of n ≥ 100 points, either randomly generated or from a public repository (e.g.,

UCI, ScikitLearn, etc).

(b) Provide results (in a table or plot, clearly labeled) for the distortion of the projected points

versus the original points, as you increase the dimensionality of the embedded points.

(c) For the same dataset and parameter settings, replace the normal distribution with ±1 random

variables. How does the embedding change (better, worse, different, . . .)?
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