# Algorithmic Challenges in DNA Data Storage

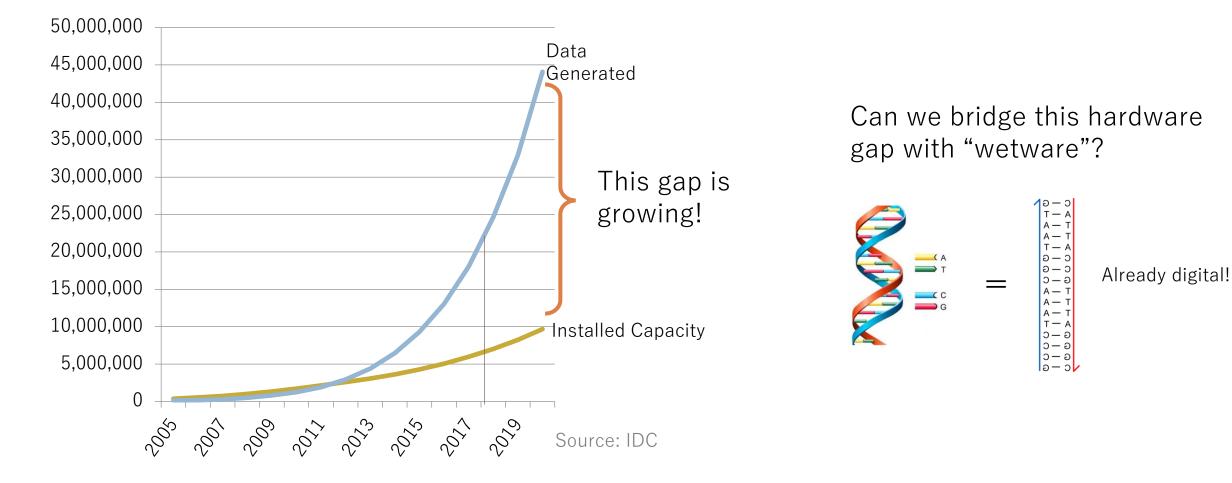
#### Cyrus Rashtchian

Data Science Fellow Computer Science & Engineering and QI



#### Storage capacity is growing too slowly

Petabytes



# Why DNA?

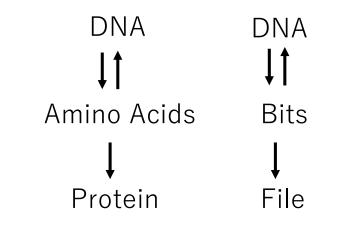


- DNA is the information system for life
- Extremely durable oldest recovered genome over 700,000 years
  - half-life > 500 years
- Readers never obsolete

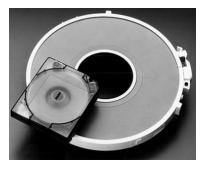


- 10<sup>3</sup>-10<sup>4</sup> times **denser** than magnetic tape
- Copying: cheap + fast
  Copying: cheap + fast





Millar, C. D. and Lambert, D. M. Nature 499, 34-35





# Dense: 1 exabyte in 1 in<sup>3</sup> Durable: 100+ years

Photo: Tara Brown / UW

#### Ultimate Storage Hierarchy

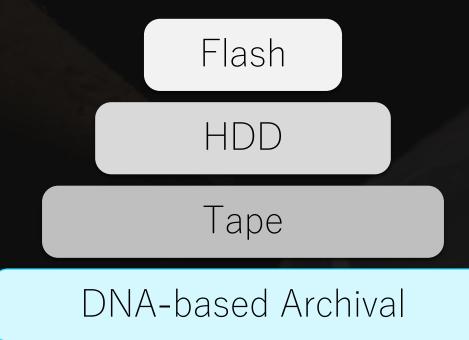
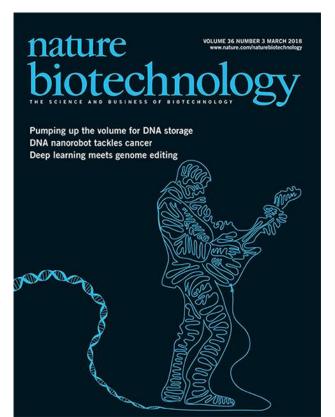


Photo: Tara Brown / UW

1960s – "There is plenty of room at the bottom" -- Feynman . . .

2012 – Church, Gao, Kosuri, *Science* Visionary, Small-scale (KBs) 2013 – Goldman *et. al.*, *Nature* 

Error-correction 2015 – Grass *et. al.;* Yazdi *et. al.* Random Access 2016 – Bornholt et. al.; Blawat et. al.; Erlich-Zielinski **Biochemical Advances** 



#### Organick et. al., ... R. ..., Nature Biotech, March 2018

- 400MB+
- Large-scale random access
- Robust data retrieval
- New algorithmic ideas



History





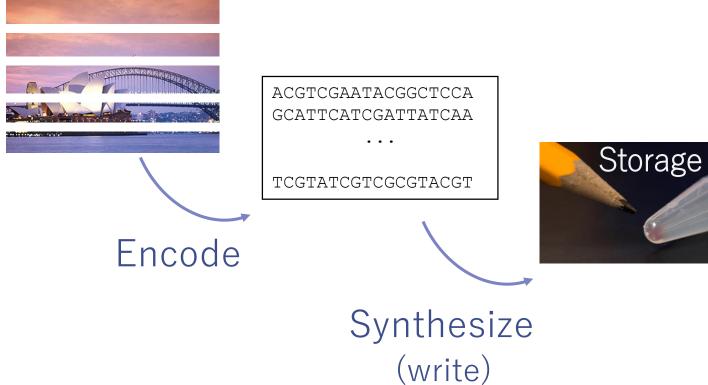
#### Part 1: Storing Digital Data in Synthetic DNA

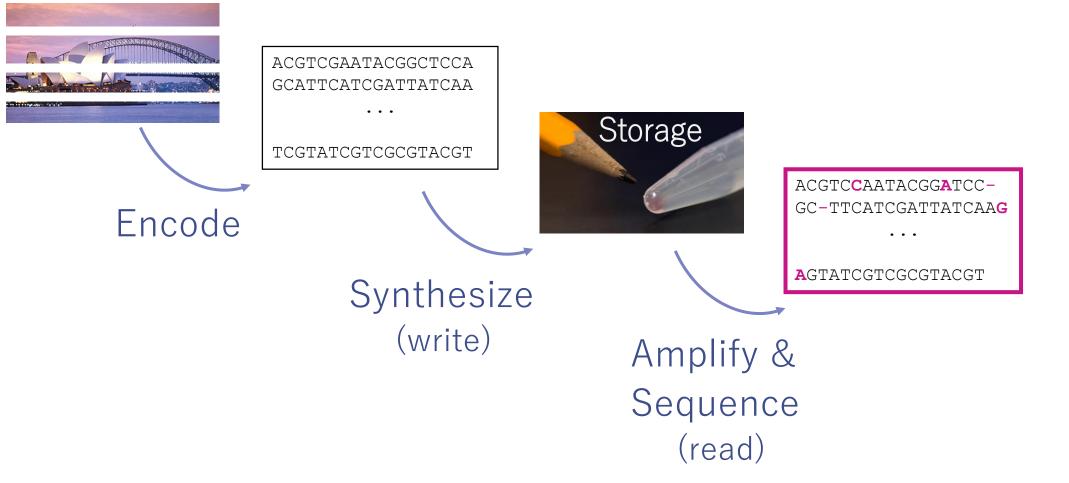
#### Part 2: Clustering for Data Retrieval

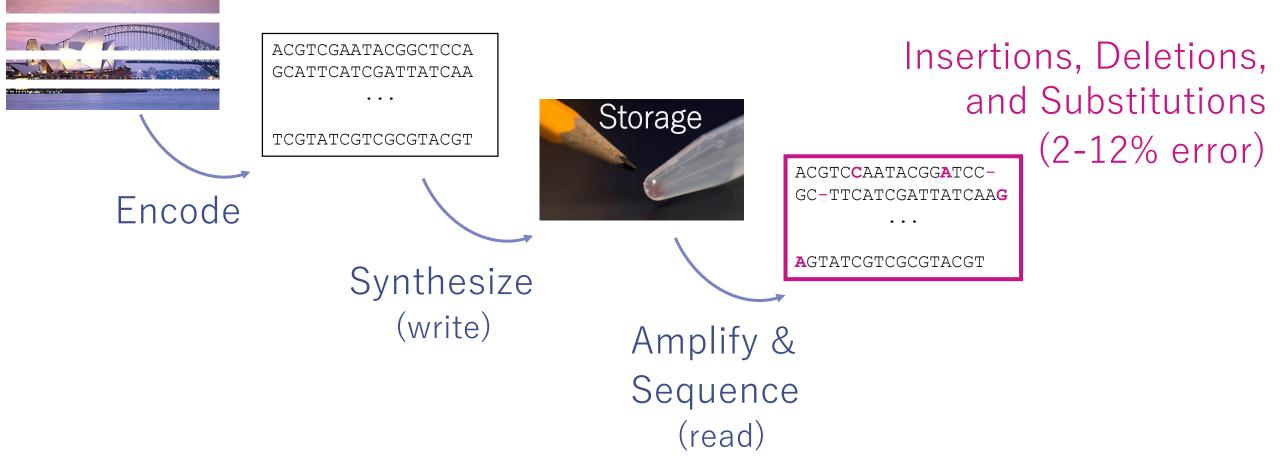
Part 3: Future Directions: Algorithmic and Molecular

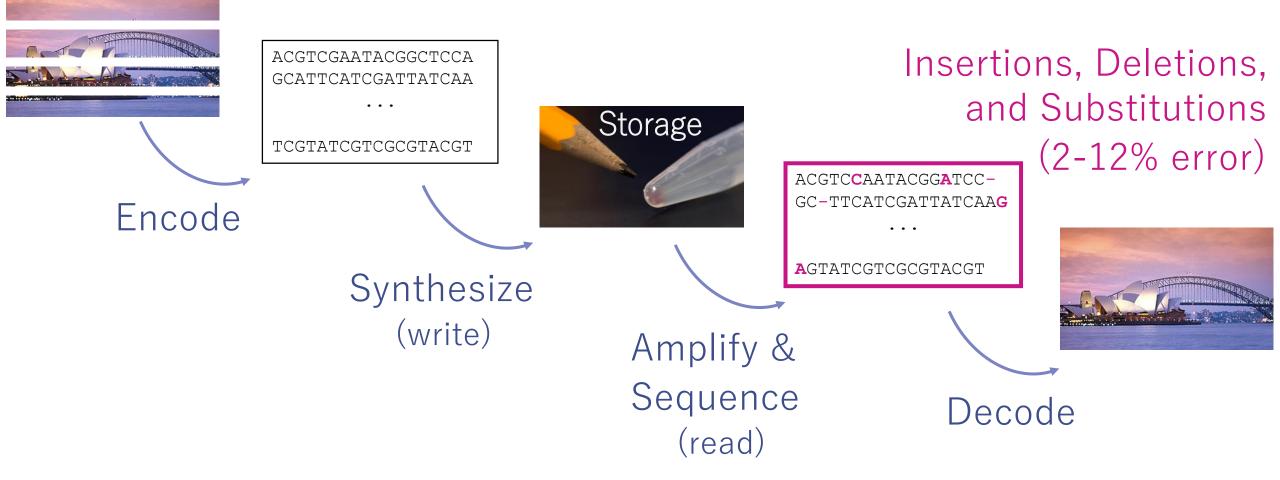












ACGTCCAATACGGATCC-GC-TTCATCGATTATCAAG

. . .

AGTATCGTCGCGTACGT





Insertions, Deletions, and Substitutions

(2-12% error)



#### Edit Distance: min # in/del/sub

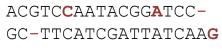
- E L E P H **A** N **T**
- TELEPHONE

ED = 3

1010101010 0101010101

ED = 2







AGTATCGTCGCGTACGT



ACGTCGAATACGGCTCCA GCATTCATCGATTATCAA ...



each strand  $\approx 10$  Bytes 1GB  $\approx 100$ M strands





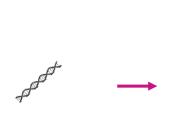


NOT NOT NOT



TCGTATCGTCGCGTACGT

copy strands  $\approx$  10 times



ACGTCCAATACGGATCC-

GC-TTCATCGATTATCAAG

. . .

AGTATCGTCGCGTACGT



# each strand $\approx$ 10 Bytes 1GB $\approx$ 100M strands

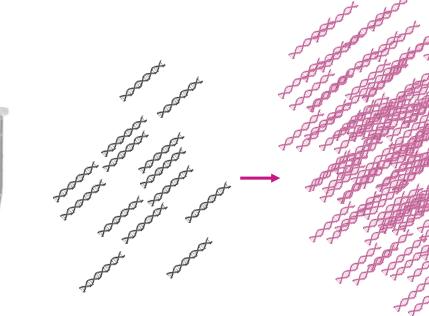


ACGTCCAATACGGATCC-GC-TTCATCGATTATCAAG ... AGTATCGTCGCGTACGT

ACGTCGAATACGGCTCCA GCATTCATCGATTATCAA

TCGTATCGTCGCGTACGT









ACGTCCAATACGGATCC-GC-TTCATCGATTATCAAG

AGTATCGTCGCGTACGT

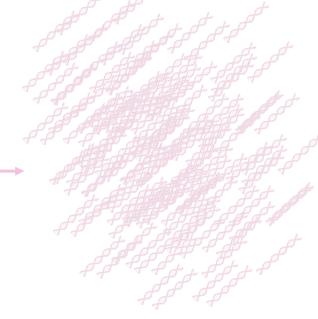


ACGTCGAATACGGCTCCA GCATTCATCGATTATCAA . . .

TCGTATCGTCGCGTACGT







 $1 \text{ GB} \rightarrow 1 \text{ Billion Reads}$ 



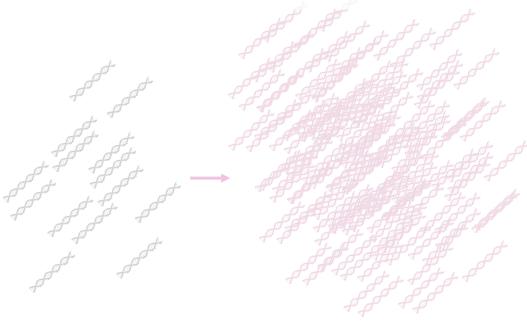
#### Randomize Data

111...111001...000000...

 $\bigcirc$  random string

001...001101...111011...

001...001 | 101...111 | 011 ...



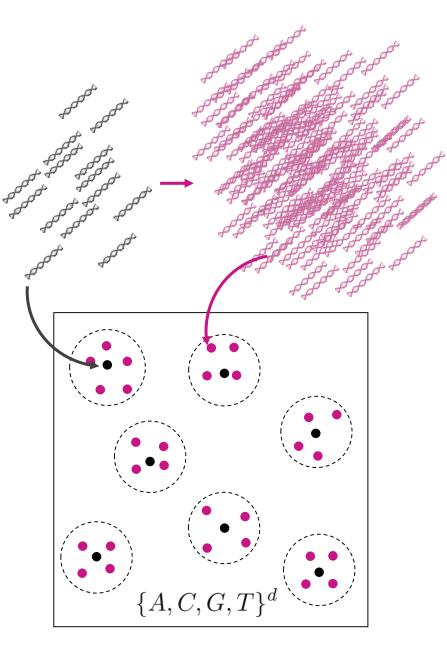
 $1 \text{ GB} \rightarrow 1 \text{ Billion Reads}$ 



Initial Strands = Cluster Centers Reads = Noisy Copies

Randomization  $\implies$  Well-separated

Clusters → Centers → Decode → Original file



### Clustering Challenges

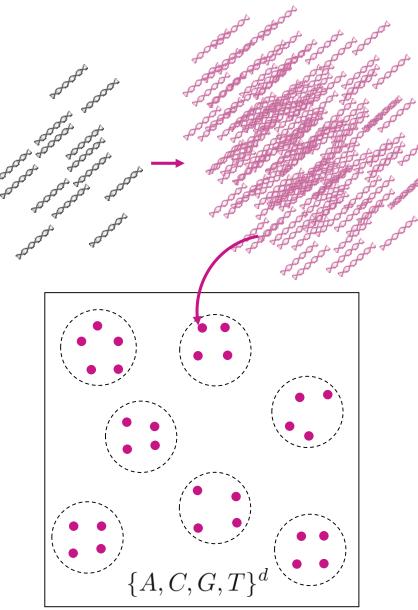
edit distance is hard

n vectors in high-dim space

# clusters  $k = \Omega(n)$ 

"Extreme Clustering" "Micro-Clustering"

Known algorithms  $O(n^2)$  time



## Our Algorithm

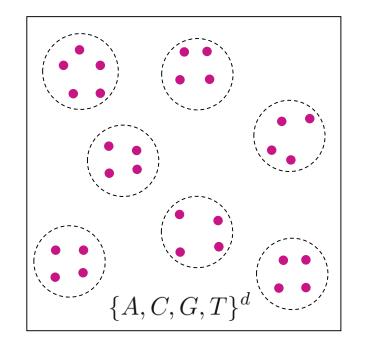
Nearly-linear time

Scales and distributes well

New hashing and embedding

10-1000x speedup + higher accuracy

Clustering Billions of Reads for DNA Data Storage R., Makarychev, Racz, Dumas Ang, Jevdjic, Yekhanin, Ceze, Strauss, NIPS 2017



### Clustering Problem Statement

**Model:** random centers & ~10 random copies k = n/10 clusters

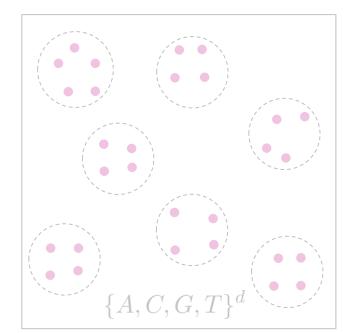
Task: quickly compute a highly-accurate clustering

Accuracy: fraction of mostly correct clusters

$$\mathcal{A}_{\gamma}(\mathbf{C}, \widetilde{\mathbf{C}}) = \max_{\pi} \frac{1}{|\mathbf{C}|} \sum_{i=1}^{|\mathbf{C}|} \mathbf{1}_{\{\widetilde{C}_{\pi(i)} \subseteq C_i \text{ and } |\widetilde{C}_{\pi(i)}| \ge \gamma |C_i|\}}$$

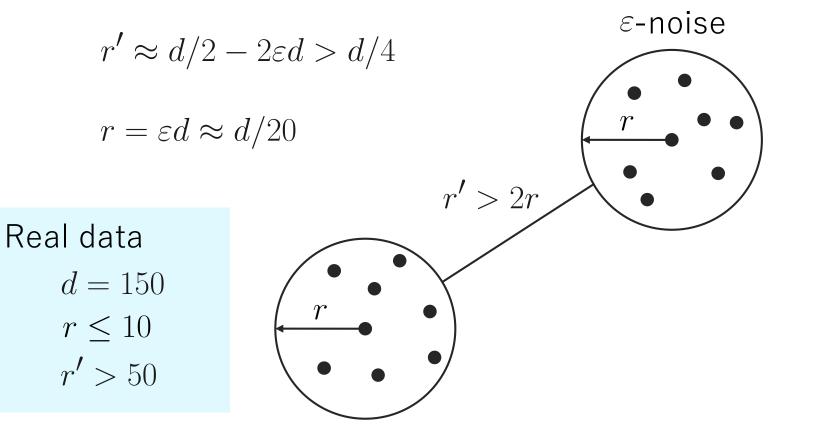
Induced underlying clustering

 $\mathbf{C} = \{C_1, \ldots, C_k\}$ 



#### Separation

**Defn:** (r, r')-separated clusters



Induced underlying clustering  $\mathbf{C} = \{C_1, \dots, C_k\}$ 



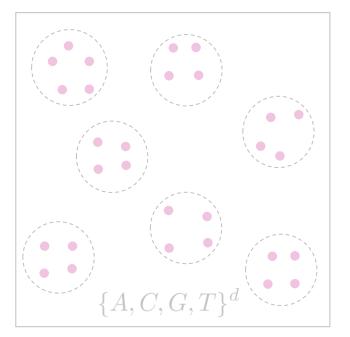
### Good but slow algorithm

Compare all pairs of strings

Connected components of r-NN graph

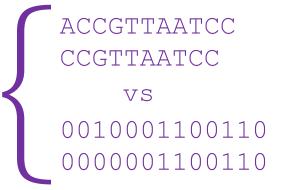
 $O(n^2)$  comparisons each O(rd) time r' > 2rReal data d = 150 $r \le 10$ r' > 50 Induced underlying clustering

$$\mathbf{C} = \{C_1, \ldots, C_k\}$$

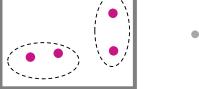


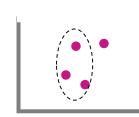
- (0) Initialize each string as singleton cluster
- (1) Hash cluster representatives into buckets based on similarity

- (2) Within a bucket
  - i. Compute Hamming distance of binary signatures
    - Merge if very small Hamming distance
    - Ignore if very large Hamming distance
  - ii. Compute edit distance when ambiguous; merge if close
- (3) Return to step (1)











#### Hash close in edit distance ⇒ same bucket efficient to compute Not quite LSH (crucially uses randomness)

#### **Binary Signatures**

edit distance  $\approx$  Hamming distance cheaper than edit dist. (within bucket)

Not quite an embedding (crucially uses randomness)

### Hash

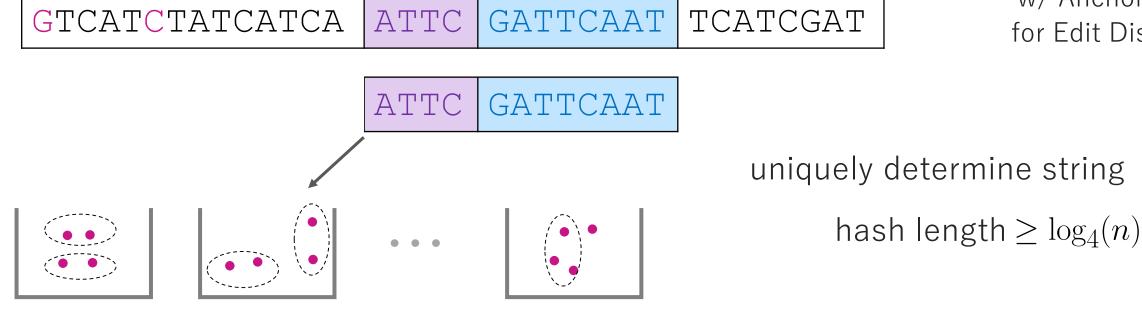


- Random anchor (same for all strings)
- Next several characters





MinHash-inspired [Broder 90s] w/ Anchors for Edit Dist

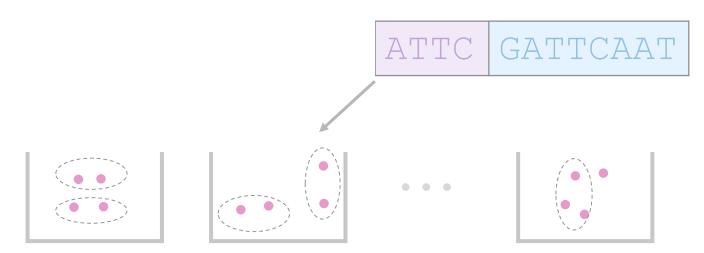


# Hash (in practice)

Choose multiple anchors (fast to check presence)

4 chars + 12 chars = 16 chars (32 bits)

GTCATCTATCATCA ATTC GATTCAAT TCATCGAT

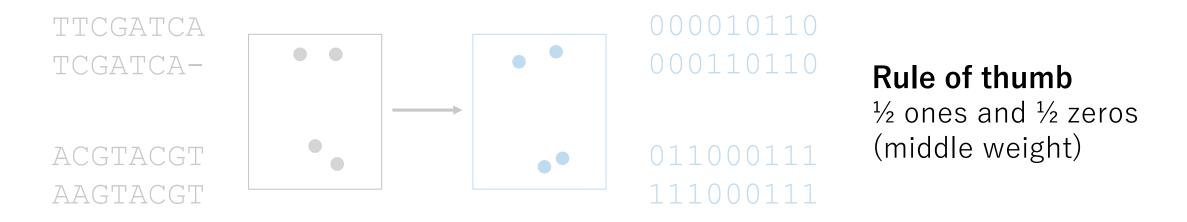


uniquely determine string

hash length  $\geq \log_4(n)$ 

### Dense Binary Coding

Metric Embedding: map to easier space & roughly preserve distances

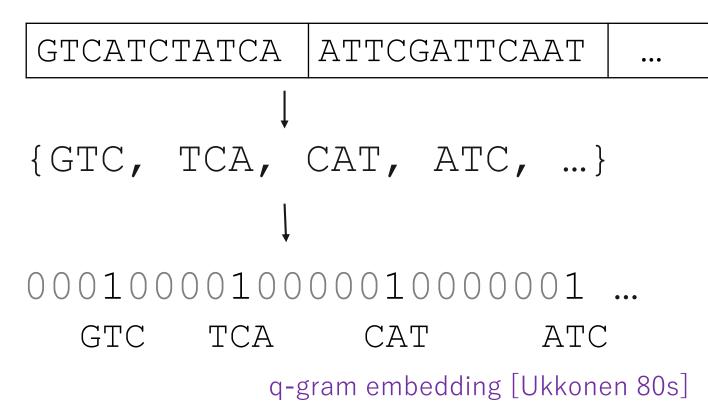


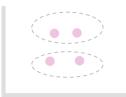
**Bad News:** large distortion in general for many spaces (e.g., edit to Hamming)

**Good News:** preserve dist. up to  $O(\log d)$  for **random** strings

### Binary Embedding

Hamming distance between signatures approximates edit distance

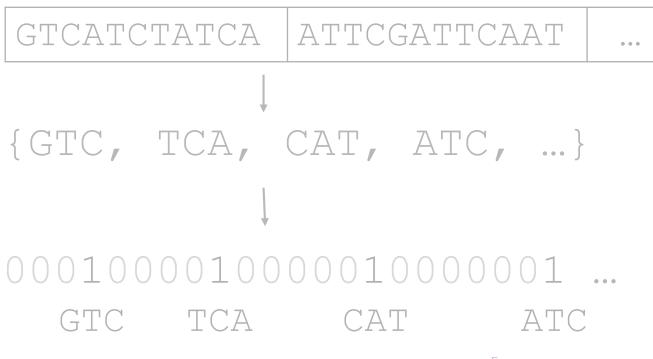




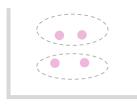




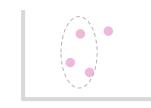
# Binary Embedding



q-gram embedding [Ukkonen 80s]







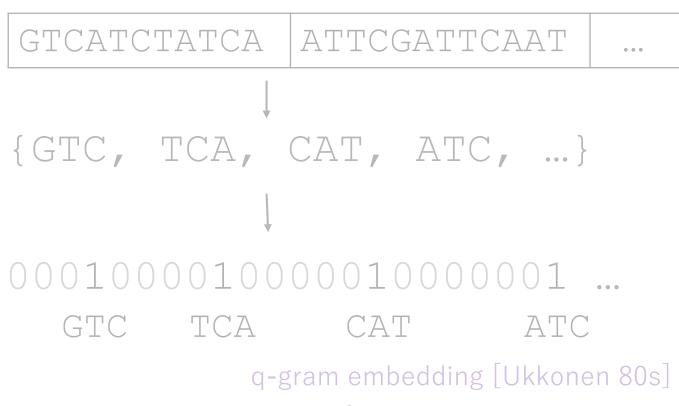
Hamming distance between signatures approximates edit distance

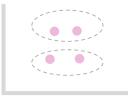
 $\sigma_q(x) \in \{0,1\}^{4^q}$ 

**Claim 1** (close pairs stay close):  $d_H(\sigma_q(x), \sigma_q(y)) \le 2q \cdot d_E(x, y)$ 

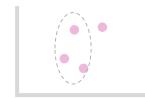
**Claim 2** (random centers are far): for random x, y, if  $q > 2 \log d$  $d_H(\sigma_q(x), \sigma_q(y)) \ge 2d - O(1)$ with high probability

# Binary Embedding









Hamming distance between signatures approximates edit distance  $\sigma_q(x) \in \{0,1\}^{4^q}$ Theory → Practice Idea: use blocks  $q=3 \implies$  64-dim. bit-vector use 32 chars / block

(roughly  $\frac{1}{2}$  ones and  $\frac{1}{2}$  zeros)

#### Convergence Theorem

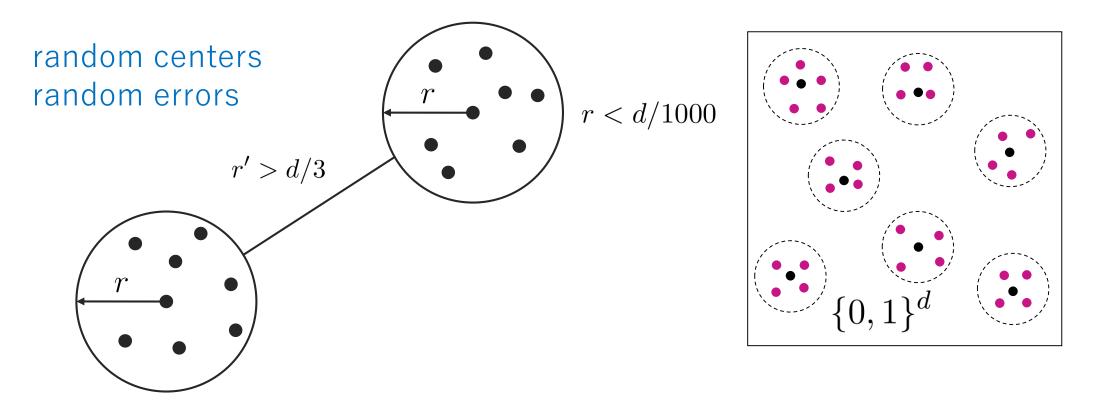
**Theorem:** Compute 99.9% accurate clustering in time  $n^2 \cdot (1/d)^{O(1/\varepsilon)}$ 

**Proof:** 

Number of iterations roughly  $\frac{n}{d^{1/\varepsilon}}$ Each with O(n) comparisons that take time  $O(rd) = O(d^2)$ 

**Question:** can we get down to time  $n^{1+\varepsilon} \cdot \operatorname{poly}(d)$  ???

### Clustering in Hamming Distance

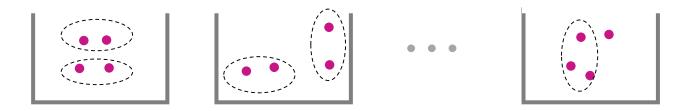


**Question:** Compute 99.9% accurate clustering in time  $n \cdot \text{poly}(d, \log n)$ 

### Distributed Version

(0) Initialize each string as singleton cluster

(1) Hash cluster representatives into buckets based on similarity



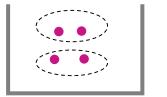
- (2) Within a bucket
  - i. Compute Hamming distance of binary signatures
    - Merge if very small Hamming distance
    - Ignore if very large Hamming distance
  - ii. Compute edit distance when ambiguous; merge if close

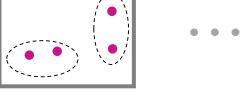
(3) Return to step (1)

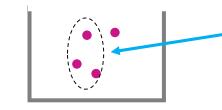
# Distributed Version

(0) Initialize each string as singleton cluster

(1) Hash cluster representatives into buckets based on similarity







Shuffle Current Clusters

Several local iterations

for every global round

(2) Within a bucket

- i. Compute Hamming distance of binary signatures
  - Merge if very small Hamming distance
  - Ignore if very large Hamming distance
- ii. Compute edit distance when ambiguous; merge if close

Balance comm. time and local comp. time

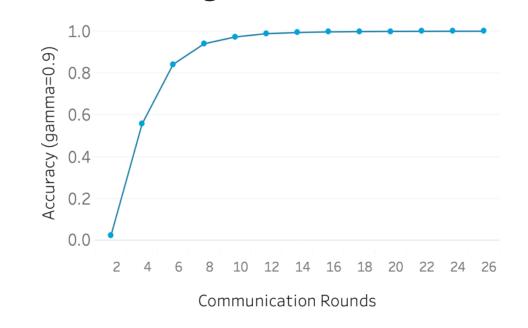
(3) Return to step (1)

## Implementation & Experiments

MPI w/ RDMA → Batch shuffle (all-to-all, using non-blocking gets)

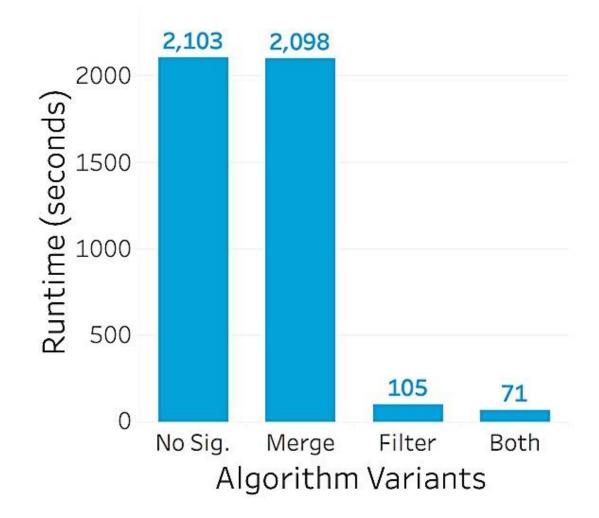
~26 shuffles, each ~30 local iterations

45 mins for 500GB (24 machines, 384 cores) ~23 min. communication ~19 min. local clustering

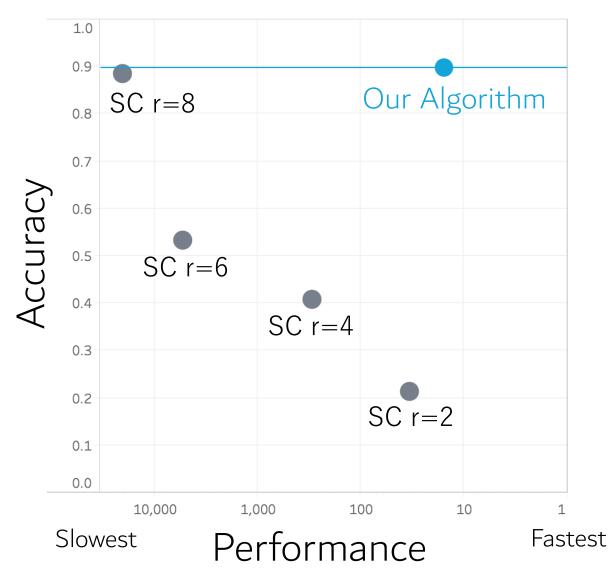


Convergence, 5.3B Reads

Binary Signature Performance (3.1M Real Reads; Single Thread)



# Outperforms Previous Methods

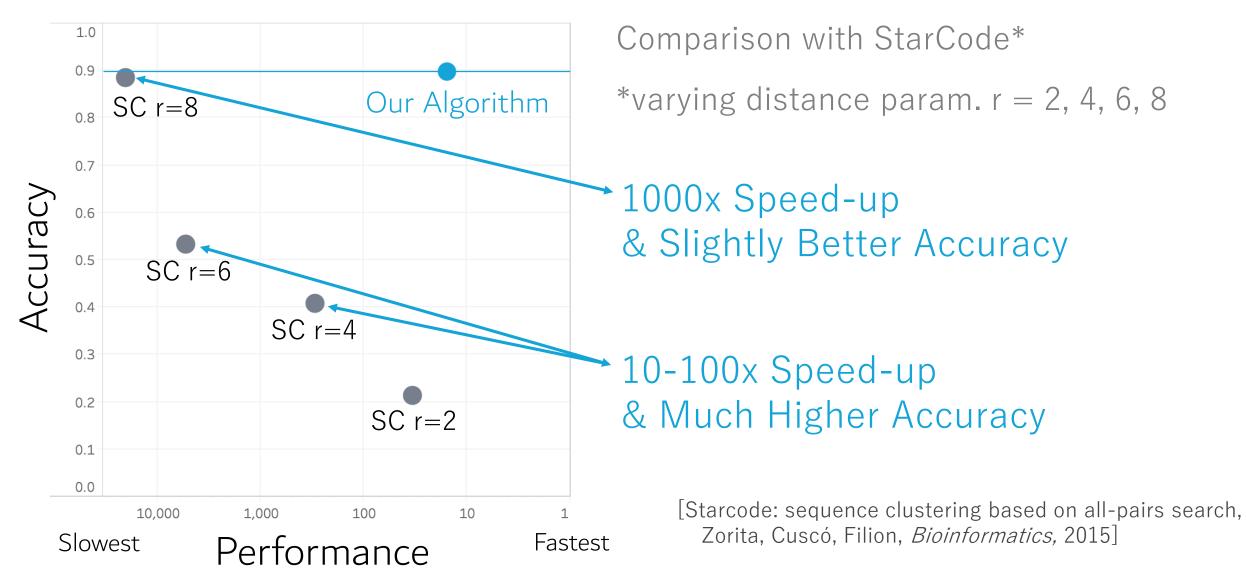


Comparison with StarCode\*

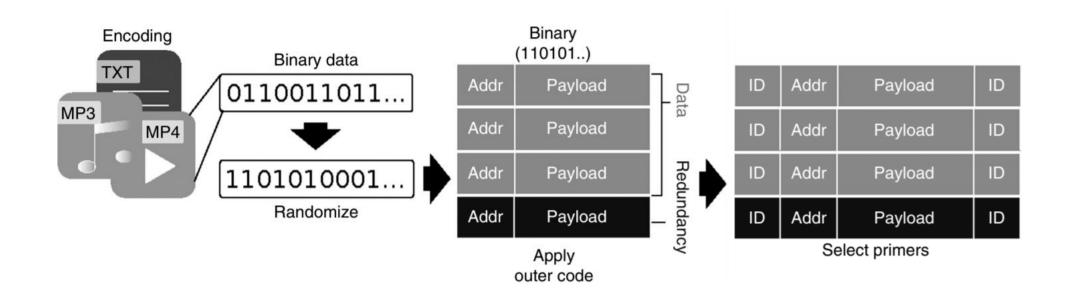
\*varying distance param. r = 2, 4, 6, 8

[Starcode: sequence clustering based on all-pairs search, Zorita, Cuscó, Filion, *Bioinformatics*, 2015]

# Outperforms Previous Methods

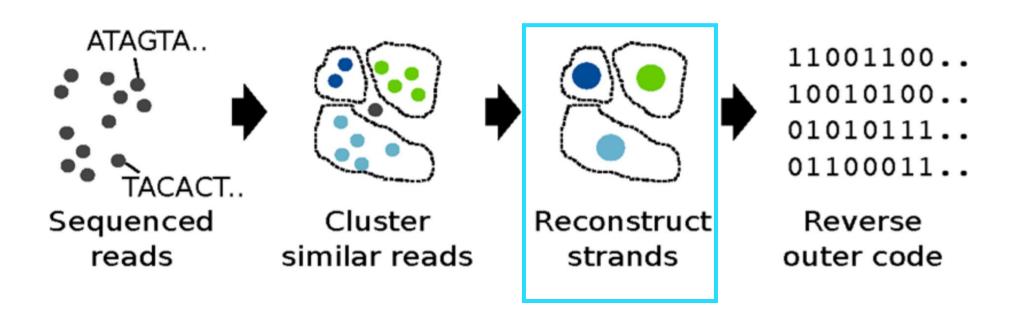


# Storing Data



Organick et. al., Nature Biotech, 2018

# Retrieving Data



Organick et. al., Nature Biotech, 2018

unknown worst-case string n bits

### 



unknown worst-case string n bits

### 

Deletion channel, probability 0.5

unknown worst-case string n bits

### 

Deletion channel, probability 0.5

unknown worst-case string n bits

### 

 $1 - 0 - 0 - 1 - 0 - 0 \approx n/2$ 

0

0

0

0

0

60

Deletion channel, probability 0.5

unknown worst-case string n bits

### 

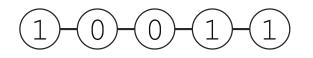
 $1 - 0 - 0 - 1 - 0 - 0 \approx n/2$ 

0

0

 $\left( 0\right)$ 

Deletion channel, probability 0.5



. 0

0

. . .

0

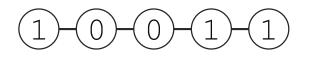


unknown worst-case string n bits

### 

1)-(0)-(0)  $\approx n/2$  Deletion channel, probability 0.5

)-0-0-0-0-0-0 **Goal:** Recover *X* w.h.p. using min # traces



()

unknown worst-case string n bits

## X

 $\approx n/2$ Deletion channel, probability 0.5

0 0

**Goal:** Recover X w.h.p. using min # traces

**Known:**  $T_n \le \exp\left(n^{1/3}\right)$  [Nazarov-Peres '16; De, O'Donnell, Serv

De, O'Donnell, Servedio '16]

$$T_n \ge \widetilde{\Omega}\left(n^{5/4}\right)$$

[Holden-Lyons '18]

unknown worst-case string n bits

## X

 $\approx n/2$ 

Deletion channel, probability 0.5

0

**Goal:** Recover X w.h.p. using min # traces

**Known:**  $T_n \le \exp\left(n^{1/3}\right)$  [Nazarov-Peres '16; De. O'Donnell. Serv

De, O'Donnell, Servedio '16]

$$T_n \ge \widetilde{\Omega}\left(n^{5/4}\right)$$
 [Holden-Lyons '18]

[Batu, Kannan, Khanna, McGregor '04] [Holenstein, Mitzenmacher, Panigrahy, Wieder '08]

## Open IR Questions

### **Q1:** Recover approximately using 10 traces

- 95% of cluster centers?
- some errors okay
- nontrivial 1,2,3, ... traces ullet

**Goal:** Recover X w.h.p. using min # traces

### **Q2:** Improve these bounds!!

**Known:** 
$$T_n \le \exp\left(n^{1/3}\right)$$

[Nazarov-Peres '16; De, O'Donnell, Servedio '16]

- current algorithms: single bits ٠
- known exponential barrier ٠
- need new ideas . . .

$$T_n \ge \widetilde{\Omega}\left(n^{5/4}\right)$$

[Holden-Lyons '18]

# Future Directions: Molecular Informatics



- 1. How and what can we encode in molecules?
- 2. What types of operations can molecules execute?
- 3. What are the representational abstractions, mathematical or computational **primitives** that can describe these operations?
- 4. What does 'computation' mean in a molecular context?
- 5. What functions can be decided via molecular means and what equivalence might they have to traditional computing methods?
- 6. Can we design approaches to compute directly on and with molecular data?

# Thanks!

## Contact Cyrus Rashtchian www.cyrusrashtchian.com





