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Storage capacity is growing too slowly
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This gap is 
growing!

Can we bridge this hardware 
gap with “wetware”?

= Already digital!



• DNA is the information system for life

• Extremely durable – oldest recovered 
genome over 700,000 years
▪ half-life > 500 years

• Readers never obsolete

• 103-104 times denser than magnetic tape

• Copying: cheap + fast

Why DNA?
DNA
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Protein

DNA

Bits

File

Millar, C. D. and Lambert, D. M. Nature 499, 34–35



Dense: 1 exabyte in 1 in3

Durable: 100+ years

DNA Data Storage
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DNA Data Storage

DNA-based Archival

Tape

HDD

Flash

Ultimate Storage Hierarchy



History
1960s – “There is plenty of room at the bottom” -- Feynman

2012 – Church, Gao, Kosuri, Science

2013 – Goldman et. al., Nature

...

2015 – Grass et. al.; Yazdi et. al.

2016 – Bornholt et. al.;  Blawat et. al.;  Erlich-Zielinski

Organick et. al., ... R. ..., Nature Biotech, March 2018

Visionary, Small-scale (KBs)  

Error-correction

Random Access

Biochemical Advances

}

}

• 400MB+

• Large-scale random access

• Robust data retrieval

• New algorithmic ideas



Today

Part 1: Storing Digital Data in Synthetic DNA

Part 2: Clustering for Data Retrieval

Part 3: Future Directions: Algorithmic and Molecular



DNA Data Storage
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DNA Data Storage
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DNA Data Storage

ACGTCGAATACGGCTCCA

GCATTCATCGATTATCAA

...

TCGTATCGTCGCGTACGT
Storage

Edit Distance: min # in/del/sub

- E L E P H A N T

T E L E P H O N E

1010101010

0101010101

ED = 3 ED = 2
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Insertions, Deletions, 
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(2-12% error)



ACGTCGAATACGGCTCCA

GCATTCATCGATTATCAA

...

TCGTATCGTCGCGTACGT

DNA Data Storage
Storage ACGTCCAATACGGATCC-

GC-TTCATCGATTATCAAG

...

AGTATCGTCGCGTACGT

each strand     10 Bytes

1GB      100M strands



ACGTCGAATACGGCTCCA

GCATTCATCGATTATCAA

...

TCGTATCGTCGCGTACGT

DNA Data Storage
Storage ACGTCCAATACGGATCC-

GC-TTCATCGATTATCAAG

...

AGTATCGTCGCGTACGT

copy strands      10 times

each strand     10 Bytes

1GB      100M strands
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DNA Data Storage

1 GB   → 1 Billion Reads

Storage ACGTCCAATACGGATCC-

GC-TTCATCGATTATCAAG

...

AGTATCGTCGCGTACGT

Randomize Data

ACGTCGAATACGGCTCCA

GCATTCATCGATTATCAA

...

TCGTATCGTCGCGTACGT

001…001101…111011…

001…001 | 101…111 | 011 …

random string

111…111001…000000…



Geometry

Initial Strands = Cluster Centers

Reads = Noisy Copies

Randomization Well-separated

Clusters → Centers → Decode → Original file



Clustering Challenges

edit distance is hard

vectors in high-dim space

# clusters

Known algorithms               time 

“Extreme Clustering”

“Micro-Clustering”



Our Algorithm

Nearly-linear time

Scales and distributes well

New hashing and embedding

10-1000x speedup + higher accuracy

Clustering Billions of Reads for DNA Data Storage

R., Makarychev, Racz, Dumas Ang, Jevdjic, 

Yekhanin, Ceze, Strauss, NIPS 2017



Clustering Problem Statement

Induced underlying clustering 

Accuracy: fraction of mostly correct clusters

Task: quickly compute a highly-accurate clustering

Model: random centers & ~10 random copies

clusters



Separation

Induced underlying clustering 

-separated clusters

Real data

-noise

Defn:



Induced underlying clustering 

Real data

Good but slow algorithm

Compare all pairs of strings

Connected components of      NN graph

comparisons

each              time



Our Algorithm
(0)  Initialize each string as singleton cluster

(1) Hash cluster representatives into buckets based on similarity

(2) Within a bucket

i. Compute Hamming distance of binary signatures

• Merge if very small Hamming distance

• Ignore if very large Hamming distance

ii. Compute edit distance when ambiguous; merge if close

(3) Return to step (1)

. . .

ACCGTTAATCC

CCGTTAATCC

0010001100110

0000001100110

}
vs



Key Ideas

Hash
close in edit distance same bucket
efficient to compute

Binary Signatures
edit distance Hamming distance
cheaper than edit dist. (within bucket)

}

}

Not quite LSH
(crucially uses randomness) 

Not quite an embedding
(crucially uses randomness) 



Hash

GTCATCTATCATCA ATTC GATTCAAT TCATCGAT

GTCATCTATCATCA ATTC GATTCAAT TCATCGAT

MinHash-inspired

[Broder 90s] 

w/ Anchors 

for Edit Dist

. . .

Intuition: similar strings share substring

Idea: random synchronized substrings

• Random anchor (same for all strings)

• Next several characters

uniquely determine string

hash length            .



Hash (in practice)

GTCATCTATCATCA ATTC GATTCAAT TCATCGAT

GTCATCTATCATCA ATTC GATTCAAT TCATCGAT

. . .

uniquely determine string

hash length            .

4 chars  +  12 chars  =  16 chars (32 bits)

Choose multiple anchors (fast to check presence)



Dense Binary Coding

011000111

Metric Embedding: map to easier space & roughly preserve distances

111000111

000010110

000110110

ACGTACGT

AAGTACGT

TTCGATCA

TCGATCA-

Bad News: large distortion in general for many spaces (e.g., edit to Hamming)

Good News: preserve dist. up to                for random strings

Rule of thumb
½ ones and ½ zeros 
(middle weight)



Binary Embedding

GTCATCTATCA ATTCGATTCAAT …

{GTC, TCA, CAT, ATC, …}

. . .

0001000010000010000001 …

GTC  TCA    CAT     ATC

q-gram embedding [Ukkonen 80s]

Hamming distance between signatures 
approximates edit distance



q-gram embedding [Ukkonen 80s]

Binary Embedding

GTCATCTATCA ATTCGATTCAAT …

{GTC, TCA, CAT, ATC, …}

. . .

0001000010000010000001 …

GTC  TCA    CAT     ATC

Hamming distance between signatures 
approximates edit distance

Claim 1 (close pairs stay close):

for random        , if

with high probability

Claim 2 (random centers are far):



Binary Embedding

GTCATCTATCA ATTCGATTCAAT …

{GTC, TCA, CAT, ATC, …}

. . .

0001000010000010000001 …

GTC  TCA    CAT     ATC

q-gram embedding [Ukkonen 80s]

64-dim. bit-vector

Theory → Practice

Idea: use blocks

use 32 chars / block

(roughly ½ ones and ½ zeros)

Hamming distance between signatures 
approximates edit distance



Convergence Theorem

Theorem: Compute 99.9% accurate clustering in time

Proof: 

Number of iterations roughly

Each with           comparisons that take time 

Question: can we get down to time                           ??? 



Clustering in Hamming Distance

Question: Compute 99.9% accurate clustering in time

random centers
random errors



Distributed Version
(0)  Initialize each string as singleton cluster

(1) Hash cluster representatives into buckets based on similarity

(2) Within a bucket

i. Compute Hamming distance of binary signatures

• Merge if very small Hamming distance

• Ignore if very large Hamming distance

ii. Compute edit distance when ambiguous; merge if close

(3) Return to step (1)

. . .



Distributed Version
(0)  Initialize each string as singleton cluster

(1) Hash cluster representatives into buckets based on similarity

(2) Within a bucket

i. Compute Hamming distance of binary signatures

• Merge if very small Hamming distance

• Ignore if very large Hamming distance

ii. Compute edit distance when ambiguous; merge if close

(3) Return to step (1)

. . . Shuffle Current Clusters

Several local iterations 
for every global round

Balance comm. time

and local comp. time



Implementation & Experiments

MPI w/ RDMA → Batch shuffle (all-to-all, using non-blocking gets)

~26 shuffles, each ~30 local iterations

45 mins for 500GB (24 machines, 384 cores)

~23 min. communication

~19 min. local clustering

Convergence, 5.3B Reads



Binary Signature Performance
(3.1M Real Reads; Single Thread)



Comparison with StarCode*

*varying distance param. r = 2, 4, 6, 8

A
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u
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Performance

SC r=2

SC r=4

SC r=6

SC r=8 Our Algorithm

FastestSlowest

Outperforms Previous Methods

[Starcode: sequence clustering based on all-pairs search,
Zorita, Cuscó, Filion, Bioinformatics, 2015]



Outperforms Previous Methods
Comparison with StarCode*

*varying distance param. r = 2, 4, 6, 8

A
cc

u
ra

cy

Performance

SC r=2

SC r=4

SC r=6

SC r=8 Our Algorithm

1000x Speed-up 
& Slightly Better Accuracy

10-100x Speed-up 
& Much Higher Accuracy

FastestSlowest
[Starcode: sequence clustering based on all-pairs search,

Zorita, Cuscó, Filion, Bioinformatics, 2015]



Storing Data

Organick et. al., Nature Biotech, 2018



Organick et. al., Nature Biotech, 2018

Retrieving Data
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Trace Reconstruction

1 0 0 1 0 0

1 0 0 1 1 0 0 0 1 0 0

0 0 0 0 0 0 0

1 0 0 1 1

Deletion channel, probability

unknown worst-case string    bits

…

Goal: Recover     w.h.p. using min # traces

Known: [Nazarov-Peres ’16; 
De, O’Donnell, Servedio ’16]

[Holden-Lyons ’18]

[Batu, Kannan, Khanna, McGregor ’04]
[Holenstein, Mitzenmacher, Panigrahy, Wieder ’08]



Open TR Questions

Goal: Recover     w.h.p. using min # traces

Known: [Nazarov-Peres ’16; 
De, O’Donnell, Servedio ’16]

[Holden-Lyons ’18]

Q1: Recover approximately using 10 traces

Q2: Improve these bounds!!

• current algorithms: single bits
• known exponential barrier
• need new ideas . . . 

• 95% of cluster centers?
• some errors okay
• nontrivial 1,2,3, ... traces



Future Directions: Molecular Informatics

1. How and what can we encode in molecules? 

2. What types of operations can molecules execute? 

3. What are the representational abstractions, mathematical or computational 
primitives that can describe these operations? 

4. What does ‘computation’ mean in a molecular context? 

5. What functions can be decided via molecular means and what equivalence 
might they have to traditional computing methods? 

6. Can we design approaches to compute directly on and with molecular data?



Thanks! 

Contact 

www.cyrusrashtchian.com
Cyrus Rashtchian


