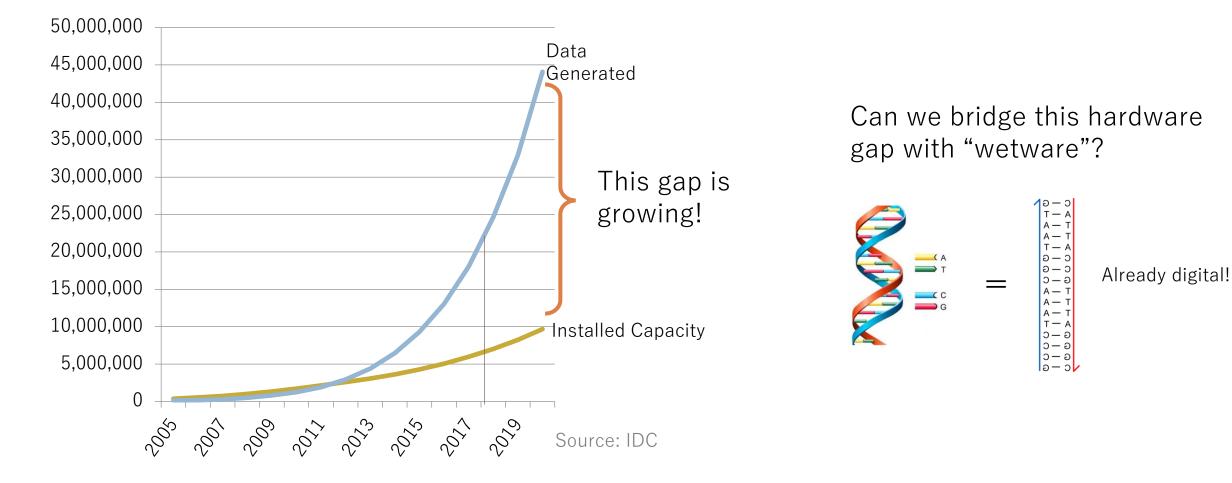
Algorithmic Challenges in DNA Data Storage

Cyrus Rashtchian

Data Science Fellow Computer Science & Engineering and QI

Storage capacity is growing too slowly

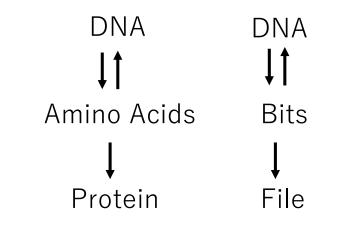
Petabytes



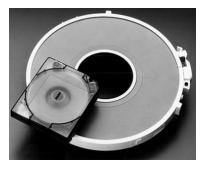
Why DNA?

- DNA is the information system for life
- Extremely durable oldest recovered genome over 700,000 years
 - half-life > 500 years
- Readers never obsolete

- 10³-10⁴ times **denser** than magnetic tape
- Copying: cheap + fast
 Copying: cheap + fast



Millar, C. D. and Lambert, D. M. Nature 499, 34-35



Dense: 1 exabyte in 1 in³ Durable: 100+ years

Photo: Tara Brown / UW

Ultimate Storage Hierarchy

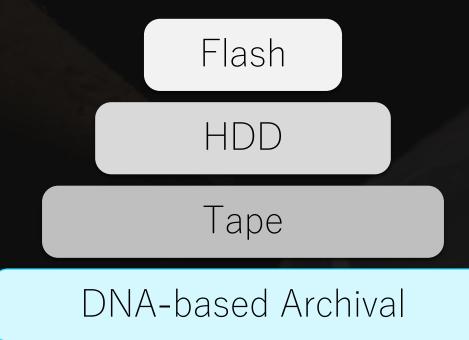
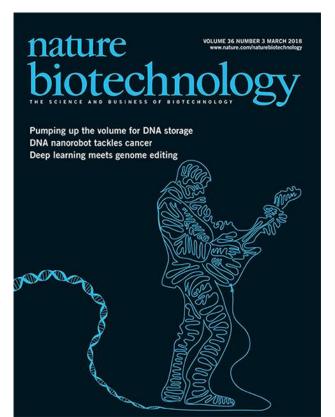


Photo: Tara Brown / UW

1960s – "There is plenty of room at the bottom" -- Feynman . . .

2012 – Church, Gao, Kosuri, *Science* Visionary, Small-scale (KBs) 2013 – Goldman *et. al.*, *Nature*

Error-correction 2015 – Grass *et. al.;* Yazdi *et. al.* Random Access 2016 – Bornholt et. al.; Blawat et. al.; Erlich-Zielinski **Biochemical Advances**



Organick et. al., ... R. ..., Nature Biotech, March 2018

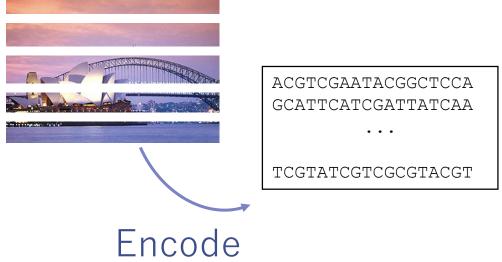
- 400MB+
- Large-scale random access
- Robust data retrieval
- New algorithmic ideas

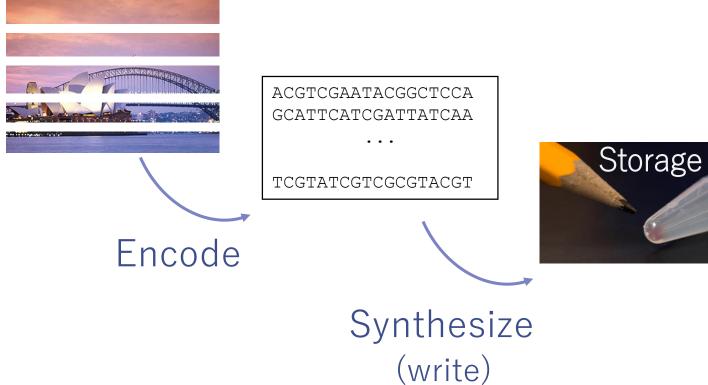
History

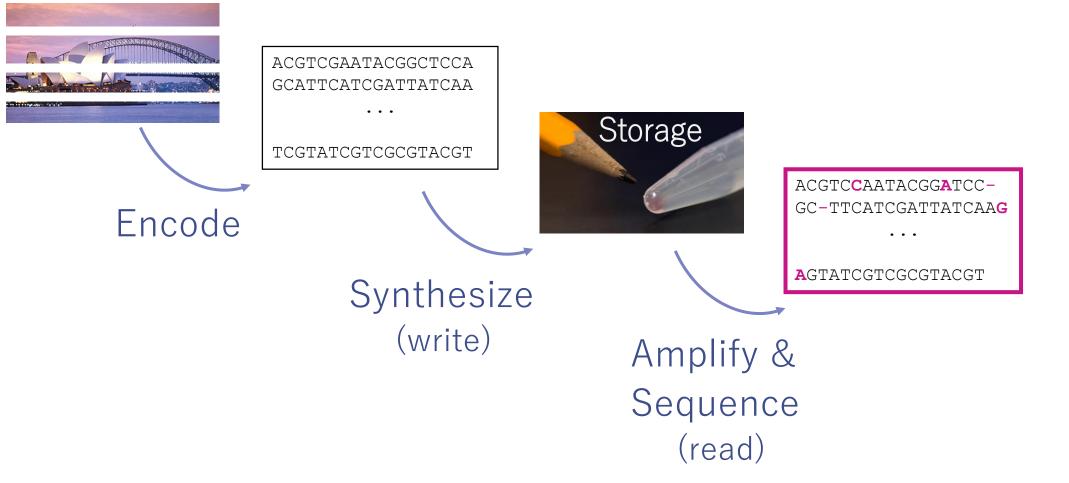
Part 1: Storing Digital Data in Synthetic DNA

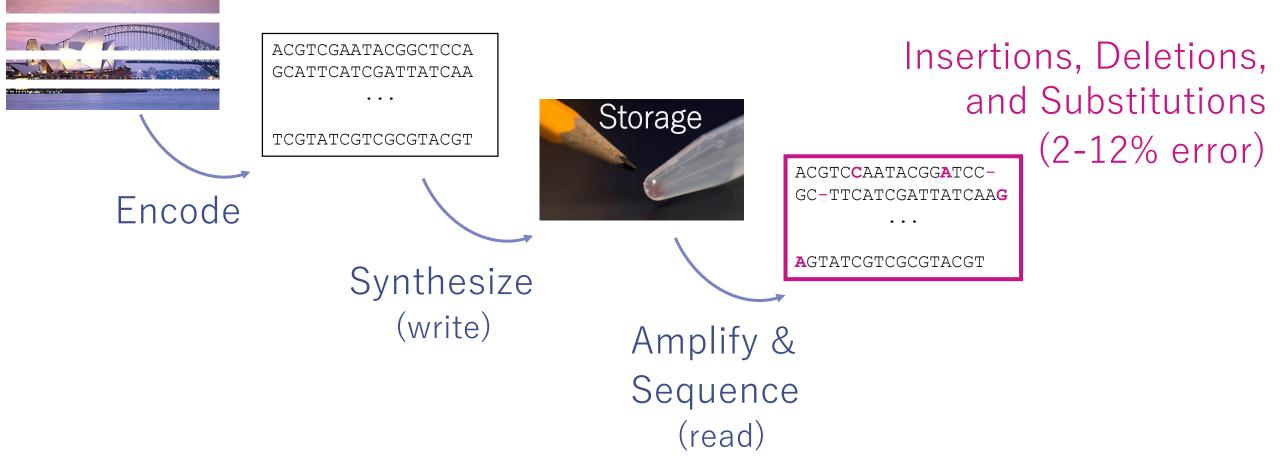
Part 2: Clustering for Data Retrieval

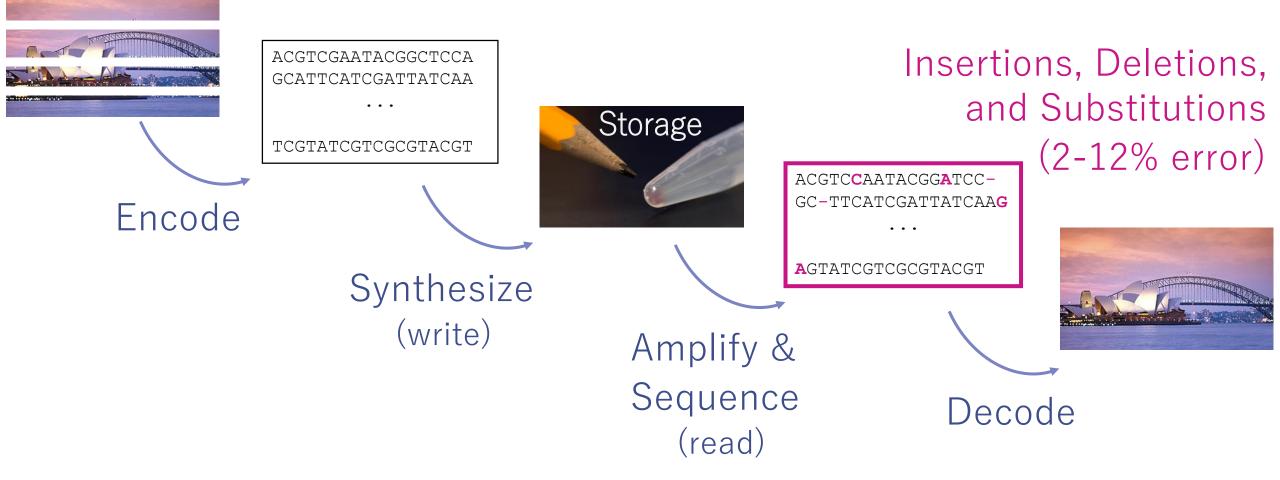
Part 3: Future Directions: Algorithmic and Molecular











ACGTCCAATACGGATCC-GC-TTCATCGATTATCAAG

. . .

AGTATCGTCGCGTACGT

Insertions, Deletions, and Substitutions

(2-12% error)

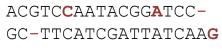
Edit Distance: min # in/del/sub

- E L E P H **A** N **T**
- TELEPHONE

ED = 3

1010101010 0101010101

ED = 2



AGTATCGTCGCGTACGT

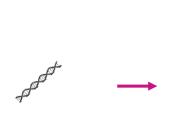
ACGTCGAATACGGCTCCA GCATTCATCGATTATCAA ...

each strand ≈ 10 Bytes 1GB ≈ 100 M strands

NOT NOT NOT

TCGTATCGTCGCGTACGT

copy strands \approx 10 times



ACGTCCAATACGGATCC-

GC-TTCATCGATTATCAAG

. . .

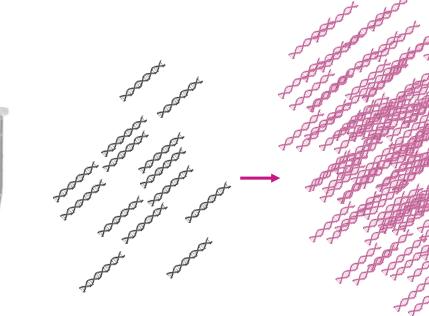
AGTATCGTCGCGTACGT

each strand \approx 10 Bytes 1GB \approx 100M strands

ACGTCCAATACGGATCC-GC-TTCATCGATTATCAAG ... AGTATCGTCGCGTACGT

ACGTCGAATACGGCTCCA GCATTCATCGATTATCAA

TCGTATCGTCGCGTACGT



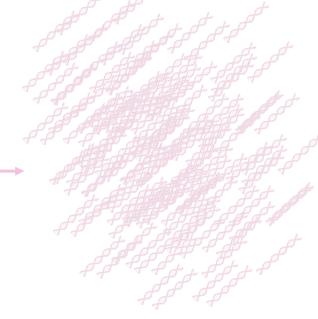
ACGTCCAATACGGATCC-GC-TTCATCGATTATCAAG

AGTATCGTCGCGTACGT

ACGTCGAATACGGCTCCA GCATTCATCGATTATCAA . . .

TCGTATCGTCGCGTACGT





 $1 \text{ GB} \rightarrow 1 \text{ Billion Reads}$

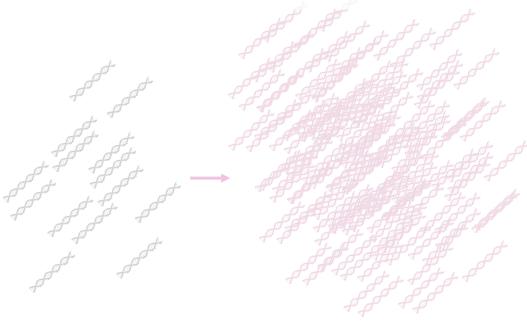
Randomize Data

111...111001...000000...

 \bigcirc random string

001...001101...111011...

001...001 | 101...111 | 011 ...

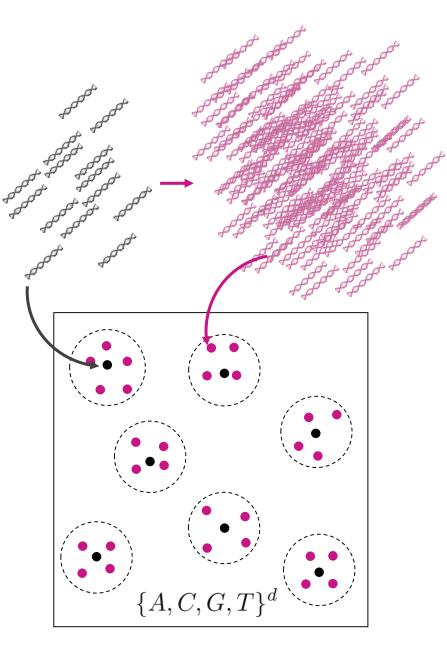


 $1 \text{ GB} \rightarrow 1 \text{ Billion Reads}$

Initial Strands = Cluster Centers Reads = Noisy Copies

Randomization \implies Well-separated

Clusters → Centers → Decode → Original file



Clustering Challenges

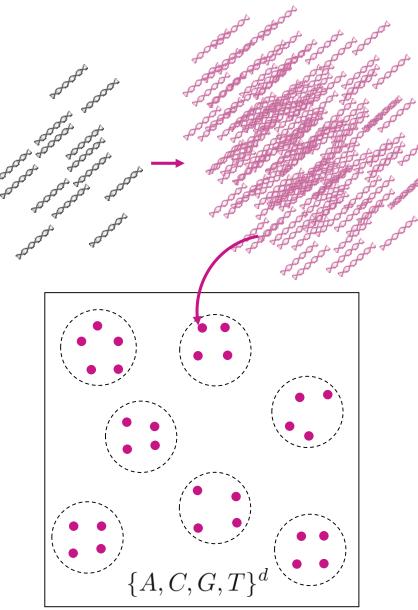
edit distance is hard

n vectors in high-dim space

clusters $k = \Omega(n)$

"Extreme Clustering" "Micro-Clustering"

Known algorithms $O(n^2)$ time



Our Algorithm

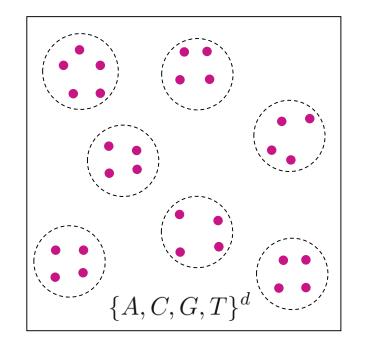
Nearly-linear time

Scales and distributes well

New hashing and embedding

10-1000x speedup + higher accuracy

Clustering Billions of Reads for DNA Data Storage R., Makarychev, Racz, Dumas Ang, Jevdjic, Yekhanin, Ceze, Strauss, NIPS 2017



Clustering Problem Statement

Model: random centers & ~10 random copies k = n/10 clusters

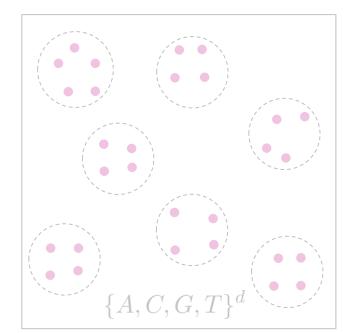
Task: quickly compute a highly-accurate clustering

Accuracy: fraction of mostly correct clusters

$$\mathcal{A}_{\gamma}(\mathbf{C}, \widetilde{\mathbf{C}}) = \max_{\pi} \frac{1}{|\mathbf{C}|} \sum_{i=1}^{|\mathbf{C}|} \mathbf{1}_{\{\widetilde{C}_{\pi(i)} \subseteq C_i \text{ and } |\widetilde{C}_{\pi(i)}| \ge \gamma |C_i|\}}$$

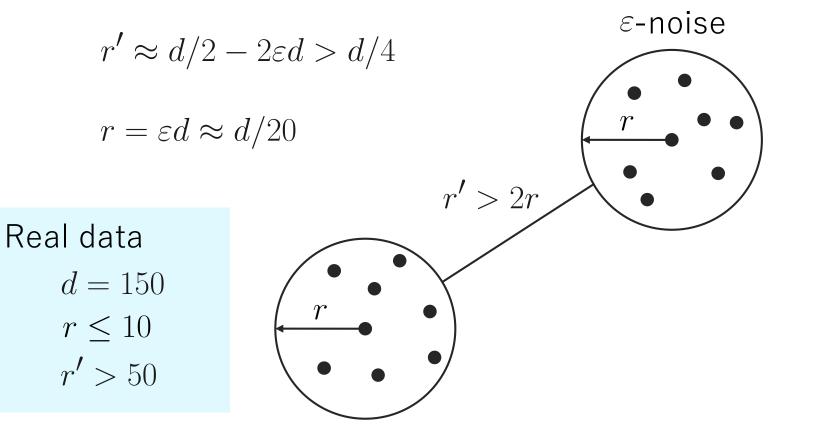
Induced underlying clustering

 $\mathbf{C} = \{C_1, \ldots, C_k\}$



Separation

Defn: (r, r')-separated clusters



Induced underlying clustering $\mathbf{C} = \{C_1, \dots, C_k\}$

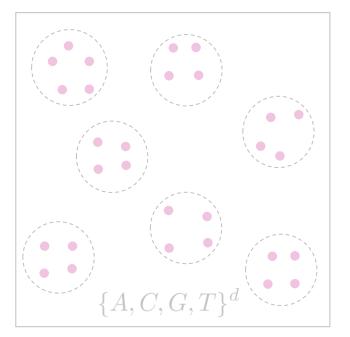
Good but slow algorithm

Compare all pairs of strings

Connected components of r-NN graph

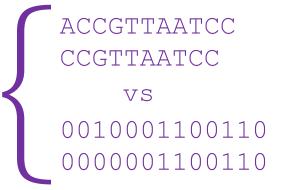
 $O(n^2)$ comparisons each O(rd) time r' > 2rReal data d = 150 $r \le 10$ r' > 50 Induced underlying clustering

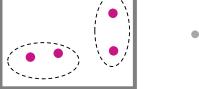
$$\mathbf{C} = \{C_1, \ldots, C_k\}$$

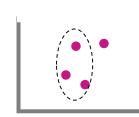


- (0) Initialize each string as singleton cluster
- (1) Hash cluster representatives into buckets based on similarity

- (2) Within a bucket
 - i. Compute Hamming distance of binary signatures
 - Merge if very small Hamming distance
 - Ignore if very large Hamming distance
 - ii. Compute edit distance when ambiguous; merge if close
- (3) Return to step (1)







Hash close in edit distance ⇒ same bucket efficient to compute Not quite LSH (crucially uses randomness)

Binary Signatures

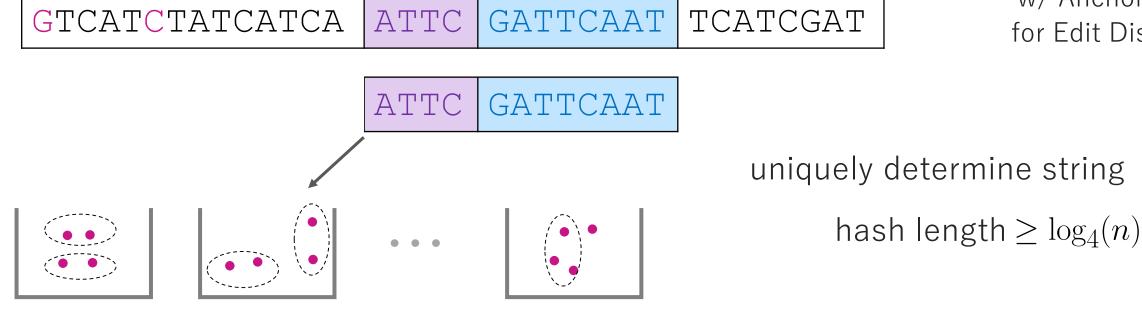
edit distance \approx Hamming distance cheaper than edit dist. (within bucket)

Not quite an embedding (crucially uses randomness)

Hash

- Random anchor (same for all strings)
- Next several characters

MinHash-inspired [Broder 90s] w/ Anchors for Edit Dist

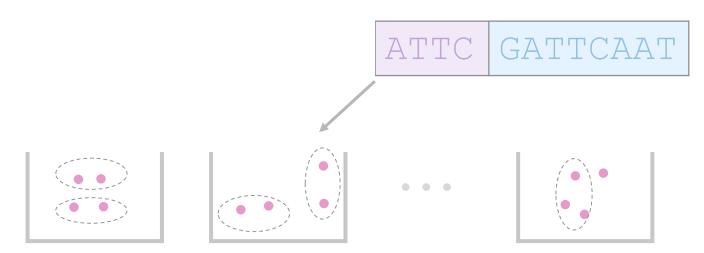


Hash (in practice)

Choose multiple anchors (fast to check presence)

4 chars + 12 chars = 16 chars (32 bits)

GTCATCTATCATCA ATTC GATTCAAT TCATCGAT

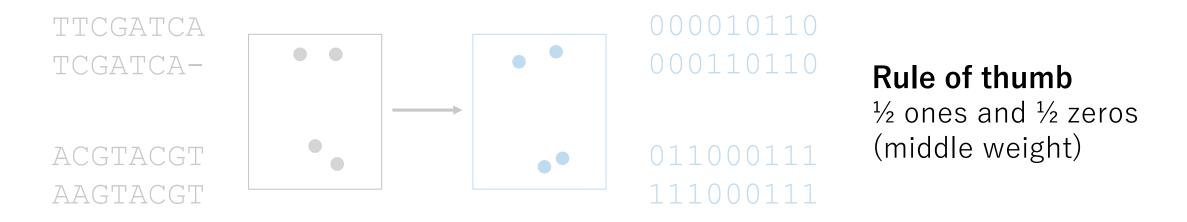


uniquely determine string

hash length $\geq \log_4(n)$

Dense Binary Coding

Metric Embedding: map to easier space & roughly preserve distances

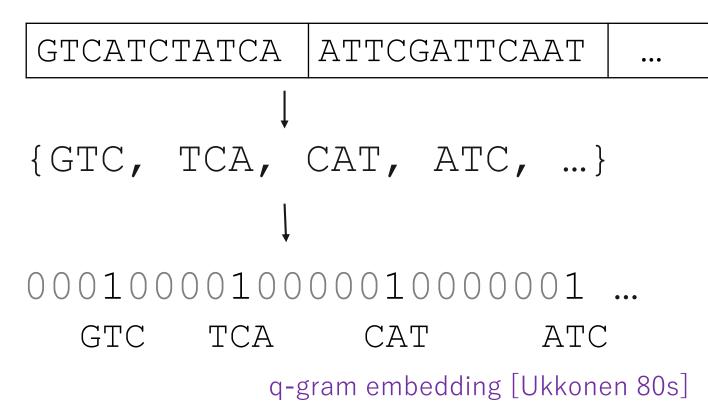


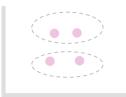
Bad News: large distortion in general for many spaces (e.g., edit to Hamming)

Good News: preserve dist. up to $O(\log d)$ for **random** strings

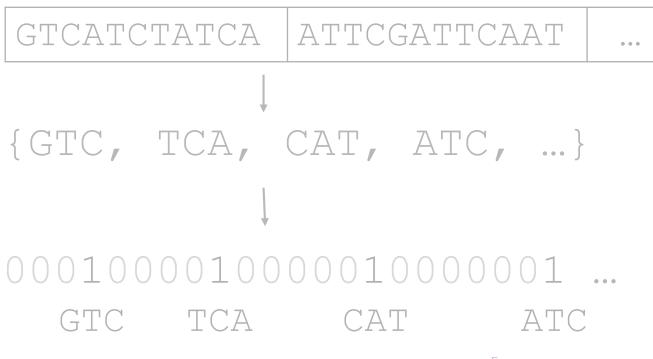
Binary Embedding

Hamming distance between signatures approximates edit distance

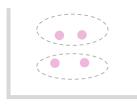


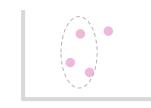


Binary Embedding



q-gram embedding [Ukkonen 80s]





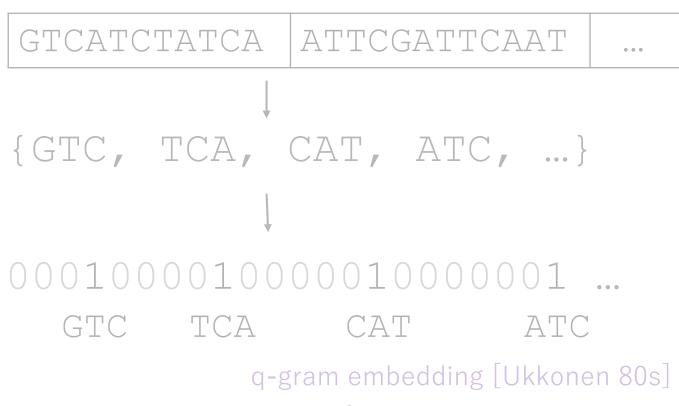
Hamming distance between signatures approximates edit distance

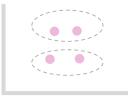
 $\sigma_q(x) \in \{0,1\}^{4^q}$

Claim 1 (close pairs stay close): $d_H(\sigma_q(x), \sigma_q(y)) \le 2q \cdot d_E(x, y)$

Claim 2 (random centers are far): for random x, y, if $q > 2 \log d$ $d_H(\sigma_q(x), \sigma_q(y)) \ge 2d - O(1)$ with high probability

Binary Embedding





Hamming distance between signatures approximates edit distance $\sigma_q(x) \in \{0,1\}^{4^q}$ Theory → Practice Idea: use blocks $q=3 \implies$ 64-dim. bit-vector use 32 chars / block

(roughly $\frac{1}{2}$ ones and $\frac{1}{2}$ zeros)

Convergence Theorem

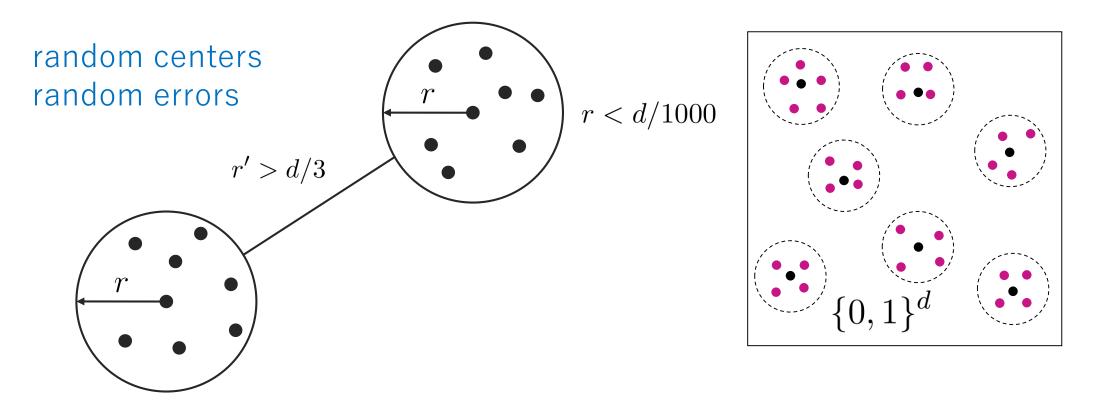
Theorem: Compute 99.9% accurate clustering in time $n^2 \cdot (1/d)^{O(1/\varepsilon)}$

Proof:

Number of iterations roughly $\frac{n}{d^{1/\varepsilon}}$ Each with O(n) comparisons that take time $O(rd) = O(d^2)$

Question: can we get down to time $n^{1+\varepsilon} \cdot \operatorname{poly}(d)$???

Clustering in Hamming Distance

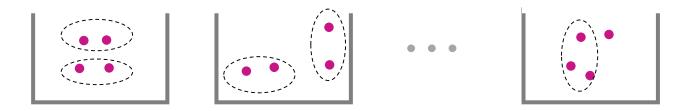


Question: Compute 99.9% accurate clustering in time $n \cdot \text{poly}(d, \log n)$

Distributed Version

(0) Initialize each string as singleton cluster

(1) Hash cluster representatives into buckets based on similarity



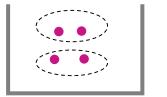
- (2) Within a bucket
 - i. Compute Hamming distance of binary signatures
 - Merge if very small Hamming distance
 - Ignore if very large Hamming distance
 - ii. Compute edit distance when ambiguous; merge if close

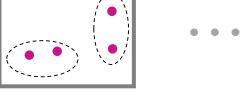
(3) Return to step (1)

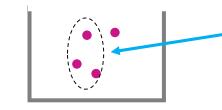
Distributed Version

(0) Initialize each string as singleton cluster

(1) Hash cluster representatives into buckets based on similarity







Shuffle Current Clusters

Several local iterations

for every global round

(2) Within a bucket

- i. Compute Hamming distance of binary signatures
 - Merge if very small Hamming distance
 - Ignore if very large Hamming distance
- ii. Compute edit distance when ambiguous; merge if close

Balance comm. time and local comp. time

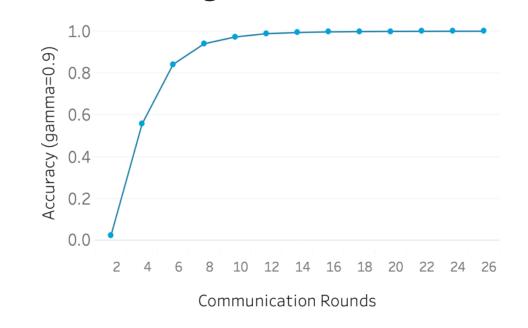
(3) Return to step (1)

Implementation & Experiments

MPI w/ RDMA → Batch shuffle (all-to-all, using non-blocking gets)

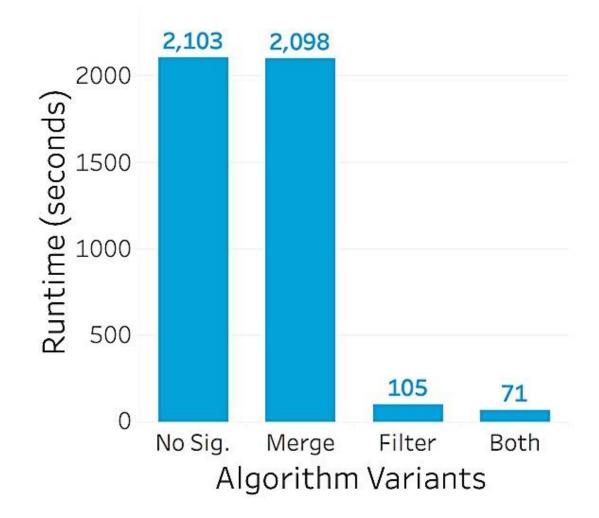
~26 shuffles, each ~30 local iterations

45 mins for 500GB (24 machines, 384 cores) ~23 min. communication ~19 min. local clustering

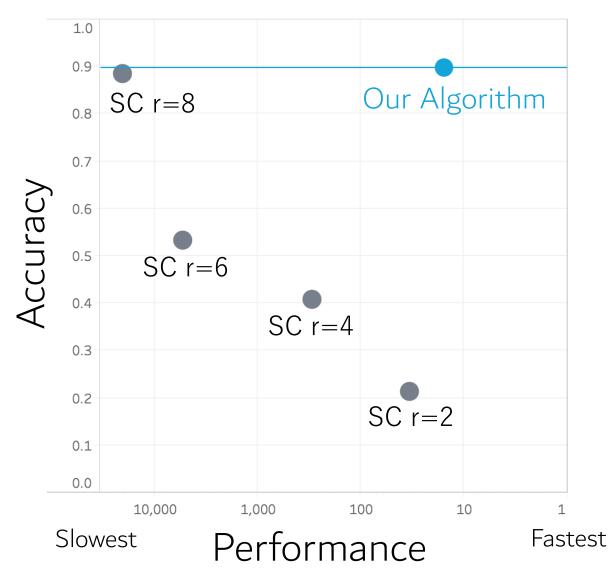


Convergence, 5.3B Reads

Binary Signature Performance (3.1M Real Reads; Single Thread)



Outperforms Previous Methods

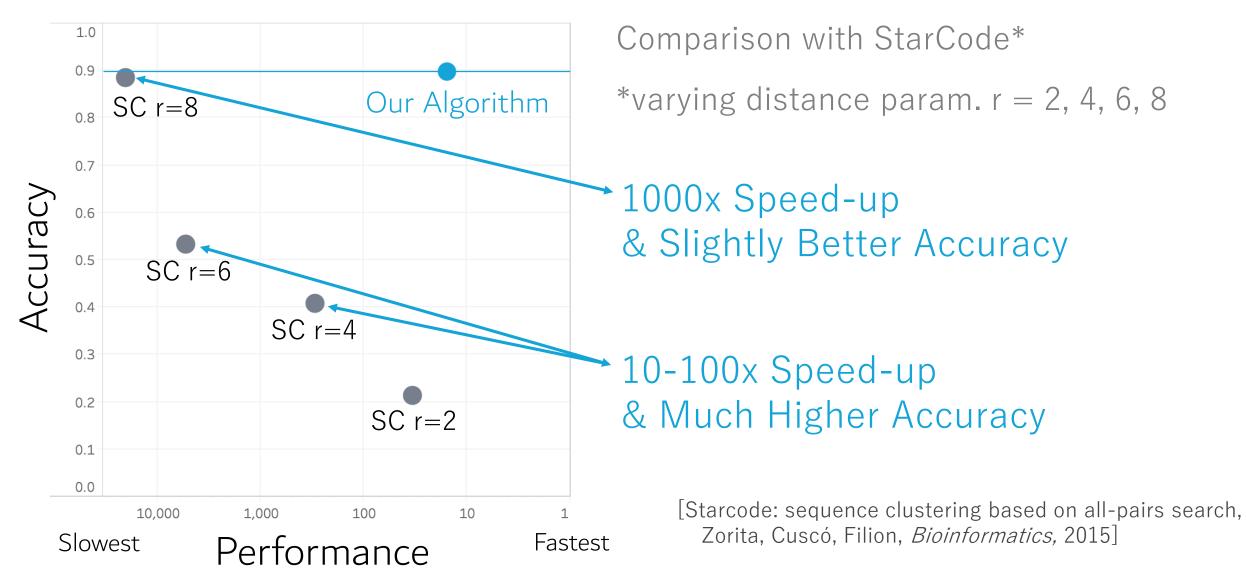


Comparison with StarCode*

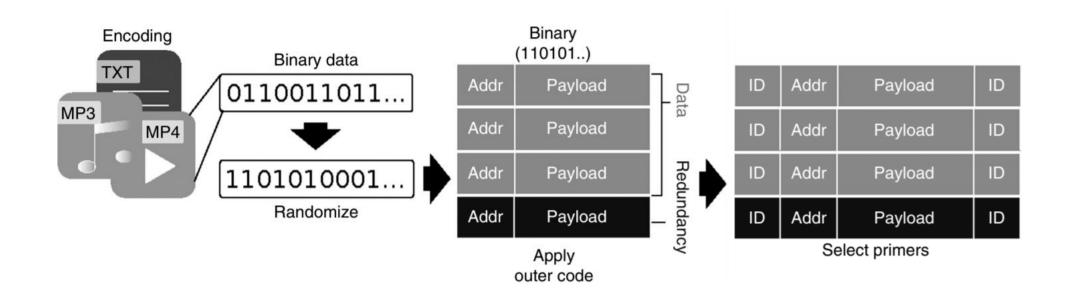
*varying distance param. r = 2, 4, 6, 8

[Starcode: sequence clustering based on all-pairs search, Zorita, Cuscó, Filion, *Bioinformatics*, 2015]

Outperforms Previous Methods

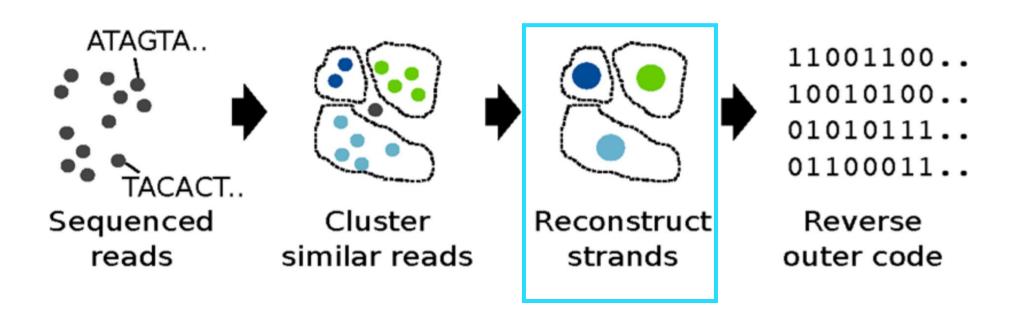


Storing Data



Organick et. al., Nature Biotech, 2018

Retrieving Data



Organick et. al., Nature Biotech, 2018

unknown worst-case string n bits

unknown worst-case string n bits

Deletion channel, probability 0.5

unknown worst-case string n bits

Deletion channel, probability 0.5

unknown worst-case string n bits

 $1 - 0 - 0 - 1 - 0 - 0 \approx n/2$

0

0

0

0

0

60

Deletion channel, probability 0.5

unknown worst-case string n bits

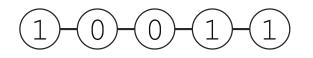
 $1 - 0 - 0 - 1 - 0 - 0 \approx n/2$

0

0

 $\left(0\right)$

Deletion channel, probability 0.5



. 0

0

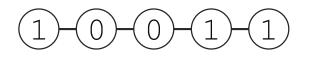
. . .

0

unknown worst-case string n bits

1)-(0)-(0) $\approx n/2$ Deletion channel, probability 0.5

)-0-0-0-0-0-0 **Goal:** Recover *X* w.h.p. using min # traces



()

unknown worst-case string n bits

X

 $\approx n/2$ Deletion channel, probability 0.5

0 0

Goal: Recover X w.h.p. using min # traces

Known: $T_n \le \exp\left(n^{1/3}\right)$ [Nazarov-Peres '16; De, O'Donnell, Serv

De, O'Donnell, Servedio '16]

$$T_n \ge \widetilde{\Omega}\left(n^{5/4}\right)$$

[Holden-Lyons '18]

unknown worst-case string n bits

X

 $\approx n/2$

Deletion channel, probability 0.5

0

Goal: Recover X w.h.p. using min # traces

Known: $T_n \le \exp\left(n^{1/3}\right)$ [Nazarov-Peres '16; De. O'Donnell. Serv

De, O'Donnell, Servedio '16]

$$T_n \ge \widetilde{\Omega}\left(n^{5/4}\right)$$
 [Holden-Lyons '18]

[Batu, Kannan, Khanna, McGregor '04] [Holenstein, Mitzenmacher, Panigrahy, Wieder '08]

Open IR Questions

Q1: Recover approximately using 10 traces

- 95% of cluster centers?
- some errors okay
- nontrivial 1,2,3, ... traces ullet

Goal: Recover X w.h.p. using min # traces

Q2: Improve these bounds!!

Known:
$$T_n \le \exp\left(n^{1/3}\right)$$

[Nazarov-Peres '16; De, O'Donnell, Servedio '16]

- current algorithms: single bits ٠
- known exponential barrier ٠
- need new ideas . . .

$$T_n \ge \widetilde{\Omega}\left(n^{5/4}\right)$$

[Holden-Lyons '18]

Future Directions: Molecular Informatics

- 1. How and what can we encode in molecules?
- 2. What types of operations can molecules execute?
- 3. What are the representational abstractions, mathematical or computational **primitives** that can describe these operations?
- 4. What does 'computation' mean in a molecular context?
- 5. What functions can be decided via molecular means and what equivalence might they have to traditional computing methods?
- 6. Can we design approaches to compute directly on and with molecular data?

Thanks!

Contact Cyrus Rashtchian www.cyrusrashtchian.com

