
Data Science Through a Geometric Lens Fall 2019

Lecture 03 — October 7, 2019

Prof. Cyrus Rashtchian Topics: Better Distinct Elements

Overview. In the last lecture we estimated the number of distinct elements d in a stream.

First we had an idealized algorithm which uses hash function h : [n] → [0, 1] and inspects

the minimum one. Then we explored hash functions that are more practical.

In this lecture, we will fix the idealized algorithm to get an actual (implementable) algorithm

by using pairwise independent hash functions. The space we need in the final version of

the algorithm is going to be O(1
ε2

log2 n log 1
δ). Recent work shows that O(1

ε2
log 1

δ + log n)

space is achievable and this also matches the lower bound.

We will need pairwise independent hash functions, which we introduced last time:

Definition 1. A family H of functions mapping [a] into [b] is pairwise independent if for

all distinct i 6= i′ ∈ [a] and for j, j′ ∈ [b],

Pr
h∈H

(h(i) = j and h(i′) = j) =
1

b2
.

We can also extend this definition to random variables.

Definition 2. Random variables Y1, . . . , Yn taking values in [b] are pairwise independent

if for all distinct i 6= i′ ∈ [n] and for j, j′ ∈ [b],

Pr(Yi = j and Yi′ = j) = Pr(Yi = j) · Pr(Yi′ = j′).

Notice that if Yi = h(i) then the two definitions coincide, because Prh∈H(h(i) = j) = 1/b.

The general definition, which makes no assumptions about them being discrete or having the

same range, is the following: “A pairwise independent collection of random variables

is a set of random variables such that any two of them are independent.”

The most useful property of such random variables is the following.

Claim 3. Let Y1, . . . , Yn be some pairwise independent random variables. Then

Var[
∑
i

Yi] =
∑
i

Var[Yi].

1 Non-Idealized Solution for Distinct Elements

We call the first algorithm NI for non-idealized. We will be able to do NI++ but not NI+.

To get a better approximation, we will use a different idea. The idea will be about using

geometric sampling to get multiple estimators (buckets), where one of them will be right

depending on the value of d, which we don’t know. To deal with this, we will get a crude

estimate d̃ using NI and then guess d̃ ≈ d to use the right bucket.

1

1.1 Constant Factor Non-Idealized Solution: NI

Recall the notation from before. We have elements i1, i2, . . . ∈ [n] arriving in a stream. We

want to estimate d = |{ij}|, the number of distinct values ij that we see.

First, we develop an algorithm NI get a O(1) approximation in O(log n) bits. That is, we

have that with good probability the approximate output d̃ will satisfy

d

16
≤ d̃ ≤ 16d.

The value 16 is not important; any constant will do. After explaining and analyzing NI, we

will improve the approximation to (1 + ε).

Algorithm NI

Assume that n is a power of two (otherwise, round up). We will use the least significant

bit (lsb) of an integer i that is set to one, which we denote lsb(i). Let’s index starting at 1.

So the smallest possible index is 1, and the largest is log(n) + 1.

1. Choose h from a 2-wise family mapping [n] to [n].

2. Maintain the largest lsb seen so far, that is,

X = max
i

lsb(h(i))

over any hash value h(i) for some i in the stream.

3. Output d̃ = 2X .

Why does this make sense? We hope X ≈ log d, and therefore d̃ = 2X ≈ d.

Focus on some i in the stream. What’s the probability that the lsb is j (and the others to

the right are 0). This is 1/2j because there are j bits that need to be exactly how you want,

e.g., lsb(i) = j iff i = [· · · 10000]base 2 with the 1 in position j.

The expected number with this lsb is exactly d/2j . So, if j ≈ log d, we expect one value i

with lsb(h(i)) = j. But if j is bigger, you aren’t going to see these values.

Fix some j ∈ {1, . . . , log n+ 1}. Define the following random variables:

Zj = # i such that lsb(g(i)) = j.

Z>j = # i such that lsb(g(i)) > j.

Note that

E[Zj] =
d

2j
,

and

E[Z>j] = d

(
1

2j+1
+

1

2j+2
+

1

2j+3
+ · · ·

)
<

d

2j
.

2

We also need to bound the variance. Fix j and let Yi = 1 if lsb(h(i)) = j. We have that

Var[
∑

i Yi] =
∑

i Var[Yi] due to the pairwise independence we have inherited from our 2-wise

hash function. (In fact, that is why we required the 2-wise independence in the first place).

Of course, Yi is just a Bernoulli random variable with probability 1
2j

of being heads, so that

the variance is

Var[Yi] =
1

2j
·
(

1− 1

2j

)
<

1

2j
.

We can then conclude that

Var

[
d∑
i=1

Yi

]
=

d∑
i=1

Var[Yi] <
d

2j
.

Approximation Guarantee

Two things to handle, X being too small (X < log d− 5) or too big (X > log d+ 5).

X is not too small with good probability. We will use Chebyshev’s Inequality. Con-

sider some lsb value j− = log d − 4. We want to show that some element i in the stream

has lsb(h(i)) ≥ j−. We know that the expectation of Zj− is pretty big, and in particular,

we have that

E[Zj−] =
d

2j−
= 16.

In other words, Zj− = 0 iff
∣∣Zj− −EZj−

∣∣ ≥ 16. We can bound the probability of this using

Chebyshev. We have already seen that Var[Zj] ≤ d
2j

, and so in this case, the variance is at

most 16 as well. Therefore,

Pr(Zj− = 0) <
Var[Zj−]

162
=

1

16
.

When Zj− ≥ 1, we will have X ≥ j− because at least one element will have lsb at least j−.

X is not too big with good probability. We will use Markov’s Inequality, and this

time, we need to consider that there is no lsb that is too much bigger than log d. Consider

j+ = log d+ 4, where we have that

E[Z>j+] ≤ 1

16
.

So by Markov

Pr(Z>j+ ≥ 1) ≤ 1

16
.

In other words, we have that Zi = 0 for all i ≥ j + 1, and hence, no lsb bigger than j will

be seen with probability at least 1− 1/16. That is, X ≤ j+ with this probability as well.

X is just right with good probability. By a union bound the probability that either of

these happen is at most 5/16. Hence, we have that X is within ±4 of log d with probability

at least 11/16 > 2/3.

3

Finishing the proof. We have just shown that

log d− 4 ≤ X ≤ log d+ 4

with probability at least 2/3. Therefore, when we output the esimate d̃ = 2X , we have that

d

16
≤ d̃ ≤ 16d.

How do we improve the error probability? Well, we can go straight to NI++ by taking a

median of O(log(1/δ)) of these. But unfortunately, we can’t reduce the approximation by

taking the average (that is, we can’t do NI+) as far as I can tell. The reason is that the

variance is too large to apply Chebyshev. So we need another idea.

1.2 Improving the Approximation: Geometric Sampling of Streams

Suppose we have a substitute that gives us d̃ as a 16-approximation to d. To get the (1+ε)-

approximation, we will use the common strategy of geometric sampling of streams.

The idea of using a crude estimate along with geometric sampling is incredible powerful in

randomized algorithm.

Recall that the trivial solution was to remember all the elements in the stream. This would

take d log n space. But what if we only remember the first K distinct elements in the stream,

with K = c/ε2. If the d < K, then we have the exact answer, and otherwise we don’t know

much. We can always run this algorithm in parallel, and therefore, we can assume d ≥ K.

The key idea is to randomly assign stream elements to buckets, so that one of the buckets

will receive the ‘right’ number of elements. Specifically, we will have log n+ 1 buckets, and

we send an element i to bucket j if lsb(g(i)) = j. In this way, we non-uniformly partition

all the elements in the stream.

We use Bj to denote the capped size of bucket j, that is, either it outputs the number of

elements it has, or it outputs the maximum possible K. In terms of random variables:

Bj = min{Zj ,K},

where Zj from before was the number of elements i sent to bucket j because lsb(g(i)) = j.

Geometric Sampling Algorithm

1. In parallel, run NI++ to get an estimate d̃ with probability 1− δ.

2. Choose g : [n]→ [n] from a 2-wise family.

3. init(): create log n+ 1 empty buckets.

4. update(i): feed i to bucket number lsb(g(i)).

5. Output: let j∗ = log(ε2d̃)− 5, and return the value d̃∗ = 2j
∗ ·Bj∗ .

4

Intuition. The key idea is that we want a bucket to have size Θ(1/ε2). First, observe

that j∗ ensures this. In particular, if for the true d, we had j = log(ε2d), then the expected

size of bucket j is E[Zj] = 1/ε2. Since our estimate d̃ is pretty good, our value of j∗ will

also be pretty good, and the bucket will have size roughly Θ(1/ε2).

Now, we want to understand why the estimator is good. The size Θ(1/ε2) is useful because

it is big enough. We actually would like bigger buckets, but we capped their max size so

we don’t use too much space. If they have max size 100/ε2, then they readily handle 1/ε2

elements without becoming full. And if they have size Θ(1/ε2), without being full, then the

point is that their variance will behave nicely. One way to do this proof is to say that if the

bucket has expected size Bj = Θ(1/ε2), then the probability Bj ∗ 2j is much bigger than d

is actually pretty small. More precisely, we will be within εd with probability at least 3/4.

You can formalize this, but we will go a somewhat different route with the calcu;ations (it

might be worth trying this yourself).

Analysis. There are two things to understand. First, what is j∗ doing? Well, we have

that j∗ = log(ε2d̃) − 4. From the NI analysis, we know that d̃ ≤ 16d. Therefore, we have

that

2j
∗ ≤ ε2d.

Then, the output is d̃∗ = 2j
∗ ·Bj∗ . How does this behave? Let’s assume we are in the case

where Bj∗ = Zj∗ because the bucket did not get full too soon. This is true except with

probability δ, so from now on, we will just condition on Bj∗ = Zj∗ < K.

Then, since E[Zj∗] = d/2j
∗
, we have that

E[d̃∗] = E[2j
∗ ·Bj∗] = 2j

∗ · E[Bj∗] = 2j
∗ · E[Zj∗] = d.

So d̃∗ is an unbiased estimator.

Now we just need to understand the variance/concentration. This is where d̃ comes in. We

know already know that that Var[Zj∗] ≤ d/2j
∗
. So then we have

Var[d̃∗] = Var[2j
∗ ·Bj∗] = 22j

∗ ·Var[Zj∗] ≤ 2j
∗ · d.

And then by the above calculation that 2j
∗ ≤ ε2d, we get that

Var[d̃∗] ≤ ε2d2.

Now we can apply Chebyshev:

Pr(|d̃∗ − d| ≥ 2εd) ≤ Var[d̃∗]

4ε2d2
≤ 1

4
.

.

To get this to 1 − δ probability, we can just“++” this whole algorithm with O(log(1/δ))

copies and take the median output value.

5

How much space do we need? We need to store g with log n bits, but this won’t matter.

The main space is to store bucket j for j ∈ {1, . . . , log n + 1}. Each held up to O(1/ε2)

elements, and it has to store log n bits for each element. So this is O(log2(n)/ε2). In total,

we need space

O

(
1

ε2
· log2 n · log

1

δ

)
.

1.3 State-of-the-Art Bounds in Literature

1.3.1 Lower Bound

The lower bound is Ω

(
1

ε2
log

1

δ
+ log n

)
bits. For those interested in the history of this

lower bound, see the following references: [1] [5] [4] [6]

1.3.2 Upper Bound

First was the work on “HyperLogLog”, which established

O

(
1

ε2
log logn+ log n

)
.

Recent work from B lasiok (2019) has established

O

(
1

ε2
log

1

δ2
+ log n

)
,

and so the problem is pretty much completely solved (in the standard streaming setting...

many other extensions and other setting to consider of course!!).

References

[1] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the

Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[2] Philippe Flajolet, G. Nigel Martin. Probabilistic Counting Algorithms for Data Base

Applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

[3] J. Lawrence Carter, Mark N. Wegman. Universal Classes of Hash Functions. Proceed-

ings of the Ninth Annual ACM Symposium on Theory of Computing, pp. 106–112,

1997.

[4] Piotr Indyk, David Woodruff. Optimal Approximations of the Frequency Moments of

Data Streams. Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory

of Computing, pp. 202–208, 2005.

6

[5] David Woodruff. Optimal Space Lower Bounds for All Frequency Moments. Pro-

ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.

167–175, 2004.

[6] Thathachar Jayram, David Woodruff. The Data Stream Space Complexity of Cascaded

Norms. 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 765–

774, 2009.

[7] Philippe Flajolet, Éric Fusy, Olivier Gandouet, Frédéric Meunier. Hyperloglog: The

Analysis of a Near-Optimal Cardinality Estimation Algorithm. AofA: Analysis of Al-

gorithms, pp. 137–156, 2007.

7

