
Data Science Through a Geometric Lens Fall 2019

Lecture 04 — October 9, 2019

Prof. Cyrus Rashtchian Topics: AMS Sketch and Majority Algorithm

Overview. Last time we saw the better distinct elements, without infinite precision hash

functions. The main idea was really about geometric bucketing of the stream.

Today we will talk about two things. First, we discuss estimating `2 norm of a data

stream. We introduce two methods for estimating `2 norm: a) Alon-Matias-Szegedy (AMS)

algorithm [1] b) Johnson-Lindenstrauss (JL) lemma [2]. In this lecture we cover the AMS

algorithm, which often appears in textbooks and notes because it is a very elegant and

simple algorithm. In the next lecture, we take a different view on `2 and cover the JL

lemma, which is a very powerful tool which is widely used in designing big data algorithms.

Today we will also talk about Heavy Hitters and Majority algorithm.

1 Review: Data Stream Model

To recap, the data stream model considers the situation where we continuously receive a

stream of data, do computation about it and answer queries about the data seen so far. We

want to deal with massive data sets, so we assume that we only see the data in this order.

Typically, we cannot access the data that has already passed through. The tricky/interesting

aspect of this model is that we can not remember all the data. But still we want to do

something meaningful, and answer the queries within some accuracy using limited memory.

More precisely, our storage is sub-linear in the size m seen so far and the universe size n.

Usually our algorithm is randomized, and we only guarantee success with probability 1− δ.
Also, the answer of the query is usually an approximation of the actual value, so our answer

is an up to 1± ε multiplicative approximation of the real answer of the query

Vector and Norm Interpretation. If the stream consists of integers from [n], then we

can represent their frequencies as a vector x = (x1, x2, . . . , xn) where xi equals the number

of times that element i was in the stream. If were using O(n log(m)) bits of storage (because

after m stream elements, the value of xi is at most logm). Then we could just store this

vector and increment xi when we see i in the stream.

Notice that the distinct element problem is just determining ‖x‖0, and the counting problem

is to determine ‖x‖1. Today we will be interested in ‖x‖2.

We can also handle multiplicities/weights. If we see element i along with a count c, then the

can represent the update as a pair (i, c), which corresponds to the operation xi ← xi + c.

Although we do not cover this, it is also interesting to allow the weights to be negative

(c < 0), where we decrement the items. This makes many algorithms more complicated.

1



Motivation For Estimating `2 Norm. The point is that ‖x‖2 is an important statistic

for vector x. If we think of x as a empirical distribution for data samples appeared in the

stream, then ‖x‖2 corresponds to the second order moment of x which reveal the spicky-

ness of x in some sense. Since ‖x‖1 = n is fixed, ‖x‖ takes its minimum value when every

xi = n/m which corresponds to the uniform distribution. Similarly, ‖x‖2 gets bigger when

xi is further form uniform. Estimating the `2 norm of the data is originated in database

application (estimating the join size, because joins end up multiplying the number of the

elements from each side). So it’s actually used and implemented in real life!

2 AMS Algorithm

The basic idea for AMS algorithm is to get an unbiased estimator of ‖x‖22 by linear sketching

and try to prove concentration by bounding the variance the estimator. We will do AMS,

AMS+, and AMS++ as usual. The punchline is that we can output an estimate Z̃ of ‖x‖22
that a 1 + ε approximation with probability 1− δ. Formally written we get that

Pr
( ∣∣∣Z̃ − ‖x‖22∣∣∣ ≥ ε‖x‖22) ≤ δ.

The total space will be

O

(
log n

ε2
· log(1/δ)

)
.

2.1 Description of the AMS algorithm

1. Choose Y1, Y2, . . . , Yn i.i.d. random variables with Pr(Yi = 1) = Pr(Yi = −1) = 0.5

2. Initialize Z ← 0

3. For each update (i, c) to the stream (a.k.a. element i with count c) do:

Z ← Z + c · Yi

4. Output Z2

The main idea: We are using the same random variable Yi when we see element i. In other

words, for each increment “+c” to xi for seeing the ith element, we are multiplying by the

same Yi value. In other words, we have that

Z =

n∑
i=1

xi · Yi.

Since Z is linear in x, when we update x by (i, c), we only need to increment Z by cYi.

Then our estimator for ‖x‖22 is Z2. This is a very simple with very clever idea. Next we

will see the analysis of the correctness of the algorithm.

2



Analysis. First we show that show that this is an unbiased estimator.

Claim 1. E(Z2) = ‖x‖22

Proof. We have just argued that Z =
∑n

i=1 xi · Yi. Then we can expand Z2 as follows:

Z2 =

(
n∑

i=1

xi · Yi

)2

=
n∑

i=1

(xi · Yi)2 +
∑
i 6=j

xixj · YiYj .

Since Yi = ±1, we have that Y 2
i = 1. So the first term is just ‖x‖2, and therefore, by

linearity of expectation,

E[Z2] = ‖x‖2 +
∑
i 6=j

xixj · E[YiYj ].

Now, the Yi are independent random variables (or at least pairwise independent). So the

second term is actually zero because

E[YiYj ] = E[Yi]E[Yj ] = 0 · 0 = 0.

We conclude that E[Z2] = ‖x‖2 as desired.

Next we bound the variance.

Claim 2. Var(Z2) ≤ 2‖x‖42.

Proof. We start with the definition of variance for Z2.

Var(Z2) = E(Z4)− E(Z2)2 = E(Z4)− ‖x‖42

We decompose E(Z4) as

E(Z4) =
∑
i,j,k,l

E(xixjxkxlYiYjYkYl) =
∑
i,j,k,l

xixjxkxl E(YiYjYkYl)

Notice E(YiYjYkYl) is 0 if there is one index only appear once in i, j, k, l so we only need

to consider the case where every distinct index appears at least twice. Then there are two

cases such that E(YiYjYkYl) = 1:

• There are two distinct pairs in (i, j, k, l) each occurring twice

• All four of i, j, k, l are identical.

So we have

E(Z4) =
1

2

(
4

2

)
·
∑
i 6=j

x2ix
2
j +

∑
i

x4i = 3
∑
i 6=j

x2ix
2
j +

∑
i

x4i

Then we can bound E(Z4) by

E(Z4) = 3
∑
i 6=j

x2ix
2
j +

∑
i

x4i = 2
∑
i 6=j

x2ix
2
j + ‖x‖42 ≤ 3‖x‖42

Putting this together we have Var(Z2) = E(Z4)− E(Z2)2 ≤ 3‖x‖42 − ‖x‖42 = 2‖x‖42.

3



We have just established that

Var(Z4) ≤ 2‖x‖42

To motivate taking many estimates (AMS+), we can try to use Chebyshev’s inequality and

see why it isn’t very good

Pr
(
|E(Z2)− ‖x‖22| ≥

√
2c‖x‖22

)
≤ 1/c2

We can observe that this bound is often too loose to be informative for approximating ‖x‖22.
For example, if we choose c = 3 (corresponding to error probability δ = 1/9), then we have

Pr(|E(Z2)− ‖x‖22| ≤ 3
√

2‖x‖22) ≤ 1/9

However we know that E(Z2) ≥ 0, so the lower bound it gives is even worse than the trivial

bound (that is, we always know that |E(Z2)− ‖x‖22| ≤ ‖x‖22 without Chebyshev).

To improve the error bound, we repeat this estimator s times independently, also known as

AMS+, and then we will take the median-of-means AMS++ to get good error probability.

2.2 AMS+

We maintain Z1, Z2, . . . , Zs where for every j,

Zj =
n∑

i=1

Yjixi.

Now we have s times more random variables. That is, Yij are i.i.d. random variables with

the same distribution as above.

Then our estimator for ‖x‖22 is Z = (
∑

j Z
2
j )/s.

Taking taking the mean of s independent estimators does not affect the mean of the esti-

mator (still an unbiased estimator) but it will reduce the variance by a factor of s.

More precisely, to analyze this improved AMS+ estimator, we compute the expectation and

variance of the estimator:

E(Z) =
1

s
·

s∑
j=1

E(Z2
j ) = ‖x‖22 and Var(Y ) =

1

s2
·

s∑
j=1

Var(Z2
j ) ≤ 2‖x‖42

s
.

Chebyshev’s inequality gives

Pr(|E(Z2)− ‖x‖22| ≤ c
√

2/s‖x‖22) ≤ 1/c2

If we set c = Θ(1) and s = Θ(1/ε2), we get a (1±ε) approximation with constant probability!

The space we need for this algorithm is dominated by the space of storing Zj for all j if

we temporarily ignore the space to generate Yji. Recall that m is the number of stream

elements and n is the universe size. For a fixed j, the maximum possible value for Zj is mn

so to store Zj we need log(mn). And there are O(1/ε2) such Zj so the total space we need

is O(log(mn)/ε2) bits. We next do AMS++ to get 1− δ success probability.

4



2.3 AMS++

We take the median of t = O(log(1/δ)) copies of AMS+. From the first two lectures (the

analysis is the exact same) we can use a Chernoff bound to get the error probability down

to 1− δ. Putting this all together, we have an algorithm with space st log n, or plugging in

these values:

O

(
log n

ε2
· log(1/δ)

)
,

where we assume that m = O(nb) for some constant b, that is, the length of the stream is

pretty much the same as the universe size as far as O(log n) is concerned.

2.4 Using 4-wise independent hash functions to make it awesome

Now we can consider how to actually generate these Yi. If we look at the proof of correctness

in detail, we can realize that we only need 4-wise independence of Yi because throughout

the analysis when we computing E(Z2) and E(Z4), the maximum degree of the polynomial

in Yi is 4. If we pick Yi by 4-wise independent hash function, all the calculations of the

expectations will remain the same so the analysis and error bounds still hold. We know that

we can generate Yi from O(log n) random bits so this is not dominant space consumption

in the algorithm.

3 Heavy Hitters

Let x be a super high dimensional vector, where xi is the count of element i (e.g., the

number of times the ith hashtag on Instagram was used last year). If we can’t store xi
exactly, we want an approximation. And if we can’t store x, we still want to answer queries

about the most frequent (a.k.a. the ‘heavy’ elements).

We have following definitions:

1. `1 point query: query(i) = xi ± ε‖x‖1

2. `1 heavy hitters: query() return L ∈ [n] s.t. :

(a) |xi| > ε‖x‖1 =⇒ i ∈ L
(b) |L| = O(1/ε)

The first question is about estimating the count of an item (as long as it is heavy enough).

The second question is about finding a heavy item.

Note that the number of ε-heavy hitters, i.e. those i satisfying |xi| > ε‖x‖1 → i ∈ L, is

less than 1/ε, so the second requirement is just saying that L should not be more than a

constant factor larger than this maximum possible size.

The heavy hitters problem shows up, for example, when we are trying to find frequent

items in a data stream. In the turnstile model with deletions, if we interpret updates in

5



one time period T as decrementing frequencies and in some other disjoint time interval

T ′ as increasing frequencies, then note that x during a query will be the difference of two

frequencies. Then a heavy hitter corresponds to an index i that changed significantly in

frequency, and thus turnstile heavy hitters algorithms can also be used to detect large

frequency changes.

We will also study the notion of point query with a tail guarantee, and “ε-tail heavy hitters”.

1. `1 point query with a tail guarantee: query(i) = xi ± ε‖x[1/ε]‖1

2. `1 tail heavy hitters: query() return L ⊆ [n] s.t. :

(a) |xi| > ε‖x
[1/ε]
‖1 =⇒ i ∈ L

(b) |L| = O(1/ε)

Here we use x[k] to denote the vector x after zeroing out its largest k entries in magnitude.

Note that the number of i such that |xi| > ε‖x[k]‖1 is at most k+ 1/ε, since other than the

set S ⊂ [n] of top k entries in x, the number of other i satisfying xi > ε
∑

j /∈S |xj | must be

less than 1/ε.

3.1 Majority Algorithm

Consider a stream i1, i2, . . . ∈ [n].

1. Initialize X ← i1 and count← 1.

2. For j = 2, 3, . . .

• If ij == X, then count← count + 1

• Else if ij 6= X, then count← count− 1

• If count == 0, then set X ← ij

The total space used is log n + logm when we have seen m elements so far. It takes log n

bits to store X. And the counter takes logm space.

We claim that at any point in the stream, the above algorithm has X set to the majority

element seen so far. That is, if there have been m elements seen so far, and i∗ has appeared

more than m/2 times, then X = i∗.

Claim 3. Let fi be the number of times i appears. If fi > m/2, then X = i at the end.

Proof. The key idea is to look at when the counter is zero. This may happen many times.

Let’s keep track of the values X when it does. That is, let’s say that i1, i2, . . . , it are the

values of X right before the counter becomes zero and we switch to something else (so t is

the number of times X changes).

6



We argue that in each of these intervals, the value ij must occur exactly half the times (that

is half the length of that interval). The counter goes up every time we see ij and down

when we see anything else. And at the end of the interval, X = ij changes to something

else and the counter is zero. Therefore, the number of counter increments is even, and ij
contributes to exactly half of these.

Looking over all t intervals, this can account for at most m/2 times that we see the majority

element i. In other words, at the end, the counter must be > 0 and X = i at the end.

References

[1] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the

Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[2] Johnson, William B., and Joram Lindenstrauss. Extensions of Lipschitz mappings into

a Hilbert space. Contemporary mathematics., 26(1):189–206, 1984.

7


	Review: Data Stream Model
	AMS Algorithm
	Description of the AMS algorithm
	AMS+
	AMS++
	Using 4-wise independent hash functions to make it awesome

	Heavy Hitters
	Majority Algorithm


