
Data Science Through a Geometric Lens Fall 2019

Lecture 05 — October 14, 2019

Prof. Cyrus Rashtchian Topics: Dimensionality Reduction and JL

Overview. In the last lecture we studied the AMS algorithm for estimating the `2 norm of a

stream. We viewed a stream of updates (i, 1) as xi = xi+1, i.e. increasing the respective coordinate

in a count vector by 1. We wanted to approximate ‖x‖22.

Today we will talk about the Johnson-Lindenstrauss (JL) sketch. This will serve as a transition

between streaming/sketching and other topics, because the real point of the JL algorithm is dimen-

sonality reduction. We will only spend two days on this topic, but we will see other applications later

as well. Dimensionality reduction is useful for many applications, such as nearest neighbor search,

clustering, regression, and convex geometry problems (e.g, minimum enclosing ball).

For historical reasons, it is often called the “Johnson-Lindenstrauss Lemma”. At a high-level the

JL Lemma maintains a linear sketch Ax, where A is a k ×m random matrix. Then, for a vector x,

we will actually look Ax, which is k-dimensional with k � n. The punchline is that this is a way

to use a low dimensional `2 norm ||Ax||22 to estimate a high dimensional `2 norm ||x||22 for x ∈ Rn.

In general, we want to map to a lower dimensional (k � n) space while preserving distances, or

angles, or volumes, etc. Moreover, we usually want to preserve approximation guarantees of some

algorithm (running over Ax instead of x).

Brief interlude on metric embeddings

One way to measure this how good Ax approximates x is the distortion. In general, we can think

of a map f : X → `k2 from an arbitrary metric space to Euclidean space. Then, the distortion is

the smallest number C > 0 such that

d(x, y) ≤ ‖f(x)− f(y)‖2 ≤ C · d(x, y).

This is well-studied for non-linear functions f as well, and in fact, many deep learning methods will

implicitly learn such a function f . Although, in machine learning, the focus is usually on embedding

with small “semantic distortion” and this is much harder to formalize. We will focus mostly on

linear maps f(x) = Ax.

We will see that a random A will work well for mapping `2 to a lower dimensional `2. But it’s not

always possible to find good maps for different metric spaces. Brinkman and Charikar showed that

for `1, it turns out that dimensionality reduction with distortion C requires dimension k ≥ nΩ(1/C2).

In other words, for any n, there exists a set of n points requiring dimension k ≥ nΩ(1/C2) to preserve

the `1 distance using the `2 distance with distortion C. This is true for any time of embedding

function f , not just linear maps.

Review of Normal Random Variables

First we recap some basics about the normal distribution. The normal distribution is distributed

on the whole real number and the shape is like a bell. It has two parameters: the mean µ and the

variance σ2. We denote it by N (µ, σ), and the density function for N (µ, σ) is

1√
2πσ2

· e−(x−µ)2/2σ2
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One important feature of the normal distribution is that it is closed under linear transformations.

If X and Y are independent normally-distributed random variables, then X + Y also has a normal

distribution (and by independence, the mean is µ = µ1 + µ2 and variance is σ2 = σ2
1 + σ2

2). More

information about these facts and others can be found on the Wikipedia page1 (worth looking at).

1 The Johnson-Lindenstrauss Lemma

Theorem 1 (Johnson-Lindenstrauss Lemma). Let ε ∈ (0, 1/2) be an accuracy parameter, and let

X = {x1, x2, . . . , xn} in Rd be a set of of high-dimensional points. There exists a matrix A ∈ Rk×d
with k = O(log(n)/ε2) such for any x, y ∈ X, we have

(1− ε)‖x− y‖22 ≤ ‖Ax−Ay‖22 ≤ (1 + ε)‖x− y‖22.

To prove this, we will show that a random mapping actually works with high probability, assuming

the entries are i.i.d. standard normal (we mention ±1 variations later).

Theorem 2 (Norm Preservation). Assume that B is a random matrix in Rk×d with entries sampled

i.i.d. from N (0, 1) and define A = 1√
k
·B. Then, for any x ∈ Rd, we have

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22.

with probability at least 1− 2e−(ε2−ε3)k/4.

The second theorem above is often called the ”Distributional JL Lemma”. Notice that ε < 1/2

means that ε2 − ε3 > ε2/2. So the probability of failure is at most e−ε
2k/8.

An important aspect of the second theorem is that we can assume without loss of generality that x

has unit norm, that is, ‖x‖2 = 1. Why? Because A is a linear map, and therefore, ‖cAx‖2 = c‖Ax‖2.

So we can always renormalize x and get the same conclusion (that is, if the theorem holds for unit

vectors, it holds for all vectors).

The main use of it is that it immediately implies the JL Lemma. We will set k = O(log(n)/ε2).

Proof of Theorem 1. The proof is constructive and is an example of the probabilistic method.

Choose an f which is a random projection. More precisely, set k = d 24
ε2 · log ne and define

f(x) =
1√
k
·Bx,

where B is a random matrix in Rk×d with entries sampled i.i.d. from N (0, 1). We define A = B/
√
k,

so that f(x) = Ax.

Note that there are
(
n
2

)
< n2 pairs of vectors in x, y ∈ X to handle to prove Theorem 1. Consider

one such pair, and notice that f(x)− f(y) = A(x− y) by definition.

By Theorem 2, we fail to achieve

(1− ε)‖x− y‖22 ≤ ‖A(x− y)‖22 ≤ (1 + ε)‖x− y‖22.

with probability at most e−ε
2k/8. Plugging in k = d 24

ε2 · log ne, we have that this is at most 1/n3. We

conclude by taking a union bound over the (at most) n2 possible pairs x, y, so that the probability

that we succeed is at least 1− 1/n.

1https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
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Aside: the above proof technique is known as ‘the probabilistic method’ because the theorem is a

deterministic statement while the proof is via a probabilistic argument. This can be very useful to

show the existence of objects that you desire. Our bound is very good though, so we will succeed

with high probability (at least 1− 1/n) by increasing k by only a constant.

1.1 Proving the norm preservation theorem

Claim 3. Assume that B is a random matrix in Rk×d with entries sampled i.i.d. from N (0, 1) and

define A = 1√
k
·B. For any x ∈ Rd,

E ‖Ax‖22 = ‖x‖22

Proof. The proof considers the expected value of a single entry j, which we denote as

[Ax]2j =
1

k
[Bx]2j .

We can compute the expectation for coordinate j (where use that EBij = 0 and that EB2
ij = 1):

E[Bx]2j = E

(
d∑
i=1

Bijxi

)2

= E
d∑
i=1

d∑
r=1

BijBrjxixr

= E
d∑
i=1

B2
iix

2
i

=

d∑
i=1

x2
i EB2

ii =

d∑
i=1

x2
i = ‖x‖22.

Therefore we have that summing over j gives:

E ‖Ax‖22 = E
m∑
j=1

[Ax]2j =
1

k

m∑
j=1

E[Bx]2j = ‖x‖22.

We need a concentration lemma about sums of squares of normal random variables. The proof is

very similar to the proof of Chernoff bound. Also, turns out that a sum of k squared normals is

called a ‘chi-squared’ χ2 distribution with k degrees of freedom.2

Lemma 4. Let Z =
∑m
j=1 Z

2
j where each Zj is i.i.d. from N (0, 1). Then,

Pr(Z ≥ (1 + ε)k) ≤ e−(ε2−ε3)k/4.

and

Pr(Z ≤ (1− ε)k) ≤ e−(ε2−ε3)k/4.

2https://en.wikipedia.org/wiki/Chi-squared_distribution
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Proof. By Markov’s inequality, and letting 0 < t < 1/2 be a parameter, we have that

Pr(Z ≥ (1 + ε)k) = Pr
(
etZ ≥ et(1+ε)k

)
= Pr

(
et

∑m
j=1 Z

2
j ≥ e(1+ε)kt

)
≤ E et

∑m
j=1 Z

2
j

e(1+ε)kt

=
(E[etZ

2
1 ])m

e(1+ε)kt

=

(
1

1− 2t

)k/2
e−(1+ε)kt

where the final step evaluates the expectation. To see this, we use that this expectation, by definition,

exactly the moment generating function for a squared normal random evaluated at t, and we know

that

E[etZ
2
1 ] =

1√
2π

∫
etz

2

e−z
2/2 dz =

1√
1− 2t

.

We will choose t = ε
2(1+ε) , which will minimize the above expression (and is less than 1/2 because

ε > 0). Plugging t in gives

Pr(Z ≥ (1 + ε)k) ≤
(
(1 + ε)e−ε

)k/2 ≤ e−(ε2−ε3)k/4,

where the final step uses the upper bound

ln(1 + ε) ≤ ε− ε2

2
+
ε3

2

which comes from the Taylor expansion.

We now prove the norm preservation Theorem 2.

Proof of Theorem 2. Recall B is a random matrix in Rk×d with entries sampled i.i.d. from N (0, 1),

and we defined A = B/
√
k. Claim 3 establishes that

E ‖Ax‖22 = ‖x‖22

To bound the failure probability, we note that Zj = [Bx]j/‖x‖2 is distributed as N (0, 1), and of

course the variables Z1, . . . , Zm are independent. We can prove this as follows:

EZj =

d∑
i=1

EBjixi = 0.

Var(Zj) = E(Z2
j ) =

d∑
i=1

EB2
jix

2
i = ‖x‖22.

For ease of notation, we now use that ‖x‖2 = 1 without loss of generality. Therefore, we see that

‖Ax‖22 > (1 + ε)

is equivalent to (using A = B/
√
k)

‖Bx‖22 > (1 + ε)k
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is equivalent to (using Zj = [Bx]j)
k∑
j=1

Z2
j > (1 + ε)k.

Invoking Lemma 4 we get the desired bound on the probability, where the factor of 2 comes from

union bounding over the (1− ε) case as well.

1.2 Interpreting AMS as dimensionality reduction

Using the AMS sketch we could provide a 1+ ε approximation of the `2, which worked by essentially

giving an embedding into `2. If we look at the squared dot product between any row and x, its

expectation will be the squared norm of x. So if we average Θ( 1
ε2 ) estimators, as in previous lectures,

then we get a (1 + ε)-approximation. Therefore we can see that AMS essentially maps x into Πx,

where Π is a random-sign matrix with n columns and Θ( 1
ε2 ) rows, with each cell equal to ±1. We

then normalize the matrix by 1√
k

(k is the number of estimators, so the number of rows in Π), so

now we can we estimate the norm of x by estimating the norm of Πx.

2 History of lower bounds

In 2011 it was resolved that the DJL lower bound is optimal [9]. Observe that the derivation of

JL from DJL does not imply that the lower bound of k will be the same for JL, as we can choose

the function f , and for a non-linear map we might be able to achieve a lower bound. Only within

the last year was it proved that the JL lower bound is also optimal. It turns out that the way to

achieve the lower bound for JL is to actually choose a random linear map (i.i.d from a Gaussian

distribution), so being able to “look” into the point set does not change anything.

• In the original JL paper by Johnson and Lindenstrauss [2], they show that there exist n + 1

points in Rn such that any JL map needs k & logn
log(2c+1) . This lower bound is achievable for

large C, as shown by Indyk and Naor [6].

• Alon [5] showed that the for same point set that JL analyzed in their paper, we can achieve a

better lower bound: k & min{n, 1
ε2

logn
log 1

ε

} Obviously we cannot get a lower bound better than

n, because the points live in an n-dimensional space. This was the best lower bound known

until within the last year.

• In 2011 there were two works, one by Jayram and Woodruff [8] and one by Kane, Meka

and Nelson [9] which show that for DJL k & min{d, 1
ε2 log 1

δ }. This is optimal, because one

distribution that always works is the distribution that always returns the identity matrix, so

that gives m = d, and the Gaussian distribution, which gives 1
ε2

logn
log 1

ε

, so their minimum is the

optimal lower bound (as both are achievable).

• After that, a paper by Larsen and Nelson [10] showed that ∀ε, n, there exist O(n3) points in

Rn such that any linear map needs k & min{n, 1
ε2 log n}.

Note that there are non-linear maps for the point sets used in the above paper that do better

than JL.

• Larsen and Nelson in 2016 [11] showed that ∀ε ∈ (0, 1
2 ), n, d, with ε > log0.5 n

min(n,d) , there exists a

hard point set in Rd such that k & 1
ε2 log n, even if the map is non-linear.

In this paper it was conjectured that ∀ n, d, ε the optimal bound ism = Θ(min{n, d, 1
ε2 log(ε2n)})
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• Alon and Klartag in 2017 [12] showed the lower bound of the conjecture above.

Regarding results in Lp, there is a theorem by Johnson and Naor [7] which shows that any norm

space that has this kind of guarantee is very close to L2 in some precise sense. Specifically for every

finite dimensional subspace of that norm space there is a low-distortion embedding to `2.

2.1 Proof of the original JL lower bound [2]

First we decide on the hard point set X = {0, e1, . . . , en} ⊆ Rn

Claim 5. If we embed these points into m-dimensional space and you preserve distances up to a

factor of c, then our target dimension has to be a factor of logn
log(2c+1) .

Proof. We will assume that the embedding maps zero to zero, as we can translate without changing

any istances. We want to preserve pairwise distances, and particularly distances of points to zero.

They used to have distance 1 to zero and distance
√

2 to each other. Now the distance to zero is

in [1, c], and the distance to each other will be in [
√

2, c
√

2]. Let ẽi be the images of the eis under

the current embedding. Now, for each one of these points we are going to consider a ball around it,

with radius 1
2 .

Observe that the balls around the ẽi are disjoint. Suppose that two of them overlap, the points will

have distance at most one (as the radii of the balls are 1
2 , which is a contradiction since they need

to have distance of at least
√

2 > 1.

Also all balls lie in a radius (C + 1
2 )-ball around zero.

Since the balls are disjoint, the sum of their volumes is bounded by the volume of the big ball. This

means that n · volm(B( 1
2 )) ≤ volm(B(C + 1

2 )). This implies that n ≤ volm(B(c+ 1
2 ))

volm(B( 1
2 ))

= (2c+ 1)m.

By taking log and dividing by log(2c+ 1), we trivially get that m ≥ logn
log(2c+1) .

2.2 Proof of the lower bound by Alon [5]

We will be using the same point set X = {0, e1, . . . , en} ⊆ Rn. Also, as before, we will be assuming

that zero gets mapped to zero.

Let B be an n ×m matrix whose columns are equal to f(ei) ∈ Rm. Also, the columns have norm

1± ε (as we want to preserve the distance to zero).

We get that:

‖ei − ej‖22 = ‖ei‖22 + ‖ej‖22 − 2〈e1, e2〉 = 2− 2〈e1, e2〉

and:

‖f(ei)− f(ej)‖22 = ‖f(ei)‖22 + ‖f(ej)‖22 − 2〈f(ei), f(ej)

= (1± ε) + (1± ε)− 2〈f(ei), f(ej)〉 ⇒
‖ei − ej‖22 +O(ε) = 2− 2〈f(ei), f(ej)〉+O(ε)⇒

〈ei, ej〉 = 〈f(ei), f(ej)〉 ±O(ε)

If f preserves distances then it also approximately preserves dot products, as it is an `2 embedding.

Therefore all the dot products between the columns of B are approximately ε.
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B is ε-incoherent matrix (after dividing the columns by their norms). This means that the columns

have unit norm, and for all columns u, v we have that |〈u, v〉| ≤ ε.

Now define A = BTB ∈ Rn×n. All of its diagonal entries equal to 1 and all non-diagonal elements

are close to zero (±ε). So A is a near-identity matrix.

Claim 6. ε < 1√
n
⇒ rank(A) = Ω(n).

Proof. (outline) The trace of A is n. The Frobenius norm squared of A (which is equal to the norm

of the vector that we get if we transform A to a vector of length n2) is at most n+ εn2. A is a real

symmetric matrix, so by the spectral theorem it has r real eigenvalues, where r = rank(A), so the

trace will be equal to n. The sum of the squares of the eigenvalues is given by the Frobenius norm,

so we can relate those two sums using Cauchy-Schwartz to get a lower bound.

Observe that if you show a lower bound on the rank of A, this gives us a lower bound on k because

rank(A) = rank(B) ≤ m.

To get the lower bound for any ε (not necessarily less than 1√
n

), we define A(k) with A(k)i,j = Aki,j ,

and we take k big enough so that εk will be arbitrarily small. It turns out that the rank of A(k)

does not become much larger, and it is lower bounded, so at the end we get a lower bound for any ε.
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