Data Science Through a Geometric Lens Fall 2019

Lecture 06 — October 16 & 21, 2019

Prof. Cyrus Rashtchian Topics: Bourgain’s Embedding

Overview. In the past two lectures, we estimated the L2 norm of a data stream in two ways: the
Alon-Matias-Szegedy (AMS) algorithm [2] and the Johnson-Lindenstrauss (JL) lemma [1].

In this lecture, we discuss an important and general metric embedding due to Bourgain [3]. The
goal is to transform an arbitrary discrete metric space into Euclidean space by allowing some ap-
proximation (known as distortion) to the distances.

1 Metric Spaces and Embeddings
We first define a metric space then provide several examples. We consider discrete metric spaces X
that consist of n = |X| points along with a distance function between pairs of points.
Definition 1. A metric space is a pair (X,dx), where X is a set and dy : X X X — Ry is a
nonnegative distance function on pairs in X. The function dy satisfies three properties:

1. dy(z,y) =0 if and only if z =y,

2. dx(z,y) = dx(y,z),

3. dx(z,y) <dx(z,2z) +dx(z,y) for al z,y,z € X.

The third property (known as the triangle inequality) differentiates metric spaces from arbitrary
notions of distance, and it implies much useful structure.

1.1 Examples

e Hamming distance: Binary strings, measuring # bits that differ, e.g., dg(1011,0111) = 2.

e Edit distance: Arbitrary strings and measure the number of insertions, deletions, substitu-
tions to transform one to the other, e.g., dg(abed, acd) = 1 and dg(abed, abbb) = 2.

e Shortest path metric: Take an arbitrary graph G = (V, E), and define the distance between
two vertices v and v as dg(v,v") = length of the shortest path between v and v'. This works
for weighted graphs as well with positive weights.

e Vector distances: For two vectors z,y € RY, you can look at the ¢, distance for of the
difference: ||z — y|[, for any p > 1.

e Matrix distances: For two matrices A, B € R™*™, you can look at the £, norm of the
singular values of A — B.

e Trivial metric: Take any set of points X and define d(z,z) = 0 and d(z,y) = 1 for z # y.



1.2 A very general embedding

How do we understand a new metric space (X,dx)? Well, we might try to compare it to a familiar
metric space. For example, we could consider a mapping F' : X — R* into Euclidean space R*

equipped with the Euclidean norm ||z|s = /2% + -+ + 27%.

How do we measure how good this mapping F' is? One way to measure this is the distortion. This
is a smallest number C > 0 such that

d(z,y) < [|F(x) = F(y)ll2 < C - d(z,y).

In this lecture, we prove the following result due to Jean Bourgain [3].

Theorem 2 (Bourgain, 1985). Any n-point metric space embeds into some Euclidean space R* with
distortion C that is bounded by C = O(logn). Moreover, we can achieve dimension k = O(logn).

Today we will show k& = O(log” n). But this is enough: we can get down to O(logn) dimensions by
using Johnson-Lindenstrauss.

We start with a simpler but worse embedding due to Frechet.

2  Warm-up: Frechet’s Embedding

We first demonstrate an embedding with distortion D < /n and dimension k¥ = n. Denote and
index the n points in X as X = {x1,z2,...,z,}.

Claim 3 (Frechet’s Embedding). The embedding f : X — R™ defined by

f(@) = (fu(@), f2(@), - fu(2)),  where fi(x) = d(z,z:).

has distortion \/n, that is, for every x,y € X we have
d(z,y) < If(z) = fW)ll2 < Vn - d(z,y).
Proof. First, observe that every coordinate is 1-Lipschitz: for every z,y € X', we have

[fi(x) = fi(y)] = ld(z, z:) — d(y, ;)| < d(z,y),

where we have used the triangle inequality. From this we get that

1F(x) = F@)5 =D _(filz) = fi(w)* < n-d(w,y)*.

i=1
This implies that || f(z) — f(y)|l2 < v/n - d(z,y) for every z,y € X.

For the lower bound, consider any y € X, and any x; € X. We directly see that

n

£ () = F@)l3 =D (fily) = fi(@))* = (f5w) = fi(2;))? = (d(y, ;) — d(z;,2;))* = (d(y, z;) - 0)°

i=1

Therefore, ||f(y) — f(x;)|l2 > d(y, z;) as desired. O



3 Bourgain’s Embedding

To improve the distortion (and prove the above theorem), we will use distances to subsets instead
of to single points. For a subset S C X and any point x € X, we define

d(z,S) = migl d(x, s),

se

as the distance between x and the closest point in S. Note that this map is also 1-Lipschitz. Indeed,
the triangle inequality implies that

d(z,S) <d(y,S) + d(z,y).

Hence,
for all z,y € X and S C X.

Fix a number m = O(logn) that we will choose shortly (we also assume log, n is an integer; otherwise,
use |log, n] throughout, which doesn’t change the resulting bounds).

Define sets S;; C X for t =1,2,...,logyn and j =1,2,...,m. Each S;; is an independent random
subset of X', where Sy; is formed by sampling every point in X independently with probability 2.

The embedding F : X — R¥ is defined using coordinates ¢, j, where we set F(z);; = d(z,S;). Note
that k = O(log? n) because ¢, j are both O(logn).

3.1 Analysis

Using Eq. (1), we see that

[F(z) = F(y)l| < vmlogn - d(z,y), (2)
for every z,y € X. This establishes the upper bound, showing the F' doesn’t increase the distances
by too much.

We move on to the lower bound. To this end, define open and closed balls: for r > 0,

B(z,r) ={ye X|d(x,y) <r}
Be(z,r) ={ye X |d(z,y) <r}

Fir z,y € X and t € [logyn]. Let 7, b the smallest radius such that
max{|B(z,r)|, |By,re)[} > 2"

Let t* be the smallest value of ¢ such that r; > d(z,y)/4 and reassign ry = d(x,y)/4.
Observe that
d(z,y)
4

We will use the sets S;; to get a contribution of (r; — r.—1) to the lower bound, and therefore Eq.
(3) shows that we will get a contribution of Q(d(x,y)).

=ri+(ro—ri1)+ (r3—ro) + -+ (rpe — 1), (3)

Consider some t € {1,2,...,t*}. For the sake of analysis, let ro = 0. Notice that, by the definition of
¢, we have that at least one of |B(z,r;—1)| > 2!~ or |B(y,r,—1)| > 2!~! will hold. Assume WLOG
that this holds for x. It is also true that |B°(y, )| < 2°. In other words, we have that

|B(z,r_1)| > 271 and |B°(y,m)| < 2.



Let S; C X be a random subset where every point is sampled independently with probability 2.
Consider the event
675 = {St n B(l‘,Tt_l) 7& @ and St N Bo(y,rt) = @}

Notice that
&t occurring implies that |d(z, St) — d(y, S¢)| > re — 1. (4)

Intuition. The main idea is that we need to choose the different S; sets with very different prob-
abilities to handle different distance scales. For example, when ¢t = 1, we choose roughly half the
points in the space. This means that we are very likely to get a point close to both x and y, so
d(z,S;) and d(y,S;) will both be small. At the other extreme, when we sample points in Siggp
with probability 1/n, we will be likely to be far from both z and y (assuming they are far apart
themselves). We will glue together these different scales for the final embeddings (which is what (3)
and the discussion afterwards is saying formally).

We first understand the probabilities of these & events. A key fact will be that because ry < d(x,y)/4,
we have that the balls B(x,r;—1) and B°(y,r;) are disjoint. Then, intuitively, & will hold with
constant probability because (i) with constant probability S; will contain at least one point in
B(x,r4—1), and (ii) also with constant probability, S; will miss all the points in B°(y,r;). This
makes sense because in ezpectation we will see 1/2 of a point from B(xz,r;_1), and also less than one
point from B°(y,r:). So there’s a chance we see some in one, and none in the other.

Each set S; might be bad by itself (so we don’t get the contribution for (3) like we want). So we
will repeat the sampling m = O(logn) times, to get sets S, ..., Stm. But these will be independent
events, so we will just focus on one such trial, and we call it S; for brevity.

Then, we show that if enough of the events hold at the same time (i.e., 2(m) of the m trials, for each ¢
value), the embedding will be good overall. This will complete the proof (by setting m = O(logn)
and taking a union bound overall pairs in the metric space).

Now back to the proof, understanding the probability of &,.

Claim 4. Pr[&] > 5.

Proof. Observe that r; < d(x,y)/4, hence B(x,r) and B(y,r:) are disjoint.

In particular, the two events composing & are independent, and it suffices to lower bound their
probabilities separately. First, note that

Pr[S;NB(z,1—1) #0] > 1-Pr[S;NB(z,1r-1)=0]
> 1-— (1 _ 2—t>\B(m,r,,_1)|
> 1-(1-2712"
1 1
> 1- >

Ve =3

where we have used the fact that (1 — 1/k)* < 1/e for k > 1. Next, calculate

o 1

Pr[S: N B°(y,r) = 0] = (1 — 2*75)\3 (ol > T

where we have used that (1 — 1/k)¥ > 1/4 for k > 2. In conclusion, by independence, both events
1

occur together with probability at least % . i = 15 as desired. O

Now, let &, be the event corresponding to Eq. (4) but for the set Sy;.



Corollary 5. If Q(m) of the events &; for j € [m] occur, then

IF(z) = F(y)ll3 = Q(m) - (ry — re-1)*.

In fact, we have something stronger
Q(m) of the events {&; | j € [m]} occur for every ¢ € [logy n]. (5)

We can make this concrete by saying that at least m/24 of the events hold (for each t) with very
high probability. This follows from a Chernoff bound.

Then, since the contributions come from disjoint sets of coordinates,

5

Q(m) - Z(Tt - Tt—1)2

|F(z) = Fy)lls > >
> () (S )
> Q(tﬁ*).d(x,y)z
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The second inequality is Cauchy-Schwarz, and the third is from Eq. (3). We could plug in m/24
instead of using the 2 notation.

Combining this with Eq. (2), our map has distortion O(logn) as long as we choose m large enough
so that Eq. (5) holds with probability, say, 1 —1/n3. That’s because we can then take a union bound
over all possible pairs z,y € X. But since each event &; occurs with probability at least 1/12, a
simple Chernoff bound shows that choosing some m = O(logn) suffices.
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