
Data Science Through a Geometric Lens Fall 2019

Lecture 06 — October 16 & 21, 2019

Prof. Cyrus Rashtchian Topics: Bourgain’s Embedding

Overview. In the past two lectures, we estimated the L2 norm of a data stream in two ways: the

Alon-Matias-Szegedy (AMS) algorithm [2] and the Johnson-Lindenstrauss (JL) lemma [1].

In this lecture, we discuss an important and general metric embedding due to Bourgain [3]. The

goal is to transform an arbitrary discrete metric space into Euclidean space by allowing some ap-

proximation (known as distortion) to the distances.

1 Metric Spaces and Embeddings

We first define a metric space then provide several examples. We consider discrete metric spaces X
that consist of n = |X | points along with a distance function between pairs of points.

Definition 1. A metric space is a pair (X , dX ), where X is a set and dX : X × X → R+ is a

nonnegative distance function on pairs in X . The function dX satisfies three properties:

1. dX (x, y) = 0 if and only if x = y,

2. dX (x, y) = dX (y, x),

3. dX (x, y) ≤ dX (x, z) + dX (z, y) for all x, y, z ∈ X .

The third property (known as the triangle inequality) differentiates metric spaces from arbitrary

notions of distance, and it implies much useful structure.

1.1 Examples

• Hamming distance: Binary strings, measuring # bits that differ, e.g., dH(1011, 0111) = 2.

• Edit distance: Arbitrary strings and measure the number of insertions, deletions, substitu-

tions to transform one to the other, e.g., dE(abcd, acd) = 1 and dE(abcd, abbb) = 2.

• Shortest path metric: Take an arbitrary graph G = (V,E), and define the distance between

two vertices v and v′ as dG(v, v′) = length of the shortest path between v and v′. This works

for weighted graphs as well with positive weights.

• Vector distances: For two vectors x, y ∈ Rd, you can look at the `p distance for of the

difference: ‖x− y‖p for any p ≥ 1.

• Matrix distances: For two matrices A,B ∈ Rn×m, you can look at the `p norm of the

singular values of A−B.

• Trivial metric: Take any set of points X and define d(x, x) = 0 and d(x, y) = 1 for x 6= y.
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1.2 A very general embedding

How do we understand a new metric space (X , dX )? Well, we might try to compare it to a familiar

metric space. For example, we could consider a mapping F : X → Rk into Euclidean space Rk

equipped with the Euclidean norm ‖x‖2 =
√
x2
1 + · · ·+ x2

k.

How do we measure how good this mapping F is? One way to measure this is the distortion. This

is a smallest number C > 0 such that

d(x, y) ≤ ‖F (x)− F (y)‖2 ≤ C · d(x, y).

In this lecture, we prove the following result due to Jean Bourgain [3].

Theorem 2 (Bourgain, 1985). Any n-point metric space embeds into some Euclidean space Rk with

distortion C that is bounded by C = O(log n). Moreover, we can achieve dimension k = O(log n).

Today we will show k = O(log2 n). But this is enough: we can get down to O(log n) dimensions by

using Johnson-Lindenstrauss.

We start with a simpler but worse embedding due to Frechet.

2 Warm-up: Frechet’s Embedding

We first demonstrate an embedding with distortion D ≤
√
n and dimension k = n. Denote and

index the n points in X as X = {x1, x2, . . . , xn}.

Claim 3 (Frechet’s Embedding). The embedding f : X → Rn defined by

f(x) = (f1(x), f2(x), . . . , fn(x)), where fi(x) = d(x, xi).

has distortion
√
n, that is, for every x, y ∈ X we have

d(x, y) ≤ ‖f(x)− f(y)‖2 ≤
√
n · d(x, y).

Proof. First, observe that every coordinate is 1-Lipschitz: for every x, y ∈ X , we have

|fi(x)− fi(y)| = |d(x, xi)− d(y, xi)| ≤ d(x, y),

where we have used the triangle inequality. From this we get that

‖f(x)− f(y)‖22 =

n∑
i=1

(fi(x)− fi(y))2 ≤ n · d(x, y)2.

This implies that ‖f(x)− f(y)‖2 ≤
√
n · d(x, y) for every x, y ∈ X .

For the lower bound, consider any y ∈ X , and any xj ∈ X . We directly see that

‖f(y)− f(xj)‖22 =

n∑
i=1

(fi(y)− fi(xj))
2 ≥ (fj(y)− fj(xj))

2 = (d(y, xj)− d(xj , xj))
2 = (d(y, xj)− 0)2

Therefore, ‖f(y)− f(xj)‖2 ≥ d(y, xj) as desired.
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3 Bourgain’s Embedding

To improve the distortion (and prove the above theorem), we will use distances to subsets instead

of to single points. For a subset S ⊆ X and any point x ∈ X , we define

d(x, S) = min
s∈S

d(x, s),

as the distance between x and the closest point in S. Note that this map is also 1-Lipschitz. Indeed,

the triangle inequality implies that

d(x, S) ≤ d(y, S) + d(x, y).

Hence,

|d(x, S)− d(y, S)| ≤ d(x, y) (1)

for all x, y ∈ X and S ⊆ X .

Fix a number m = O(log n) that we will choose shortly (we also assume log2 n is an integer; otherwise,

use blog2 nc throughout, which doesn’t change the resulting bounds).

Define sets Stj ⊆ X for t = 1, 2, . . . , log2 n and j = 1, 2, . . . ,m. Each Stj is an independent random

subset of X , where Stj is formed by sampling every point in X independently with probability 2−t.

The embedding F : X → Rk is defined using coordinates t, j, where we set F (x)tj = d(x, Stj). Note

that k = O(log2 n) because t, j are both O(log n).

3.1 Analysis

Using Eq. (1), we see that

‖F (x)− F (y)‖ ≤
√
m log n · d(x, y), (2)

for every x, y ∈ X . This establishes the upper bound, showing the F doesn’t increase the distances

by too much.

We move on to the lower bound. To this end, define open and closed balls: for r ≥ 0,

B(x, r) = {y ∈ X | d(x, y) ≤ r}
Bo(x, r) = {y ∈ X | d(x, y) < r}

Fir x, y ∈ X and t ∈ [log2 n]. Let rt b the smallest radius such that

max{|B(x, rt)|, |B(y, rt)|} ≥ 2t.

Let t∗ be the smallest value of t such that rt ≥ d(x, y)/4 and reassign rt∗ = d(x, y)/4.

Observe that
d(x, y)

4
= r1 + (r2 − r1) + (r3 − r2) + · · ·+ (rt∗ − rt∗−1). (3)

We will use the sets Stj to get a contribution of (rt − rt−1) to the lower bound, and therefore Eq.

(3) shows that we will get a contribution of Ω(d(x, y)).

Consider some t ∈ {1, 2, . . . , t∗}. For the sake of analysis, let r0 = 0. Notice that, by the definition of

rt, we have that at least one of |B(x, rt−1)| ≥ 2t−1 or |B(y, rt−1)| ≥ 2t−1 will hold. Assume WLOG

that this holds for x. It is also true that |Bo(y, rt)| < 2t. In other words, we have that

|B(x, rt−1)| ≥ 2t−1 and |Bo(y, rt)| < 2t.
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Let St ⊆ X be a random subset where every point is sampled independently with probability 2−t.

Consider the event

Et = {St ∩B(x, rt−1) 6= ∅ and St ∩Bo(y, rt) = ∅}.

Notice that

Et occurring implies that |d(x, St)− d(y, St)| ≥ rt − rt−1. (4)

Intuition. The main idea is that we need to choose the different St sets with very different prob-

abilities to handle different distance scales. For example, when t = 1, we choose roughly half the

points in the space. This means that we are very likely to get a point close to both x and y, so

d(x, St) and d(y, St) will both be small. At the other extreme, when we sample points in Slogn

with probability 1/n, we will be likely to be far from both x and y (assuming they are far apart

themselves). We will glue together these different scales for the final embeddings (which is what (3)

and the discussion afterwards is saying formally).

We first understand the probabilities of these Et events. A key fact will be that because rt ≤ d(x, y)/4,

we have that the balls B(x, rt−1) and Bo(y, rt) are disjoint. Then, intuitively, Et will hold with

constant probability because (i) with constant probability St will contain at least one point in

B(x, rt−1), and (ii) also with constant probability, St will miss all the points in Bo(y, rt). This

makes sense because in expectation we will see 1/2 of a point from B(x, rt−1), and also less than one

point from Bo(y, rt). So there’s a chance we see some in one, and none in the other.

Each set St might be bad by itself (so we don’t get the contribution for (3) like we want). So we

will repeat the sampling m = O(log n) times, to get sets St1, . . . , Stm. But these will be independent

events, so we will just focus on one such trial, and we call it St for brevity.

Then, we show that if enough of the events hold at the same time (i.e., Ω(m) of the m trials, for each t

value), the embedding will be good overall. This will complete the proof (by setting m = O(log n)

and taking a union bound overall pairs in the metric space).

Now back to the proof, understanding the probability of Et.

Claim 4. Pr[Et] ≥ 1
12 .

Proof. Observe that rt ≤ d(x, y)/4, hence B(x, rt) and B(y, rt) are disjoint.

In particular, the two events composing Et are independent, and it suffices to lower bound their

probabilities separately. First, note that

Pr
[
St ∩B(x, rt−1) 6= ∅

]
≥ 1− Pr

[
St ∩B(x, rt−1) = ∅

]
≥ 1− (1− 2−t)|B(x,rt−1)|

≥ 1− (1− 2−t)2
t−1

≥ 1− 1√
e
≥ 1

3
,

where we have used the fact that (1− 1/k)k ≤ 1/e for k > 1. Next, calculate

Pr[St ∩Bo(y, rt) = ∅] = (1− 2−t)|B
o(y,rt)| ≥ 1

4
,

where we have used that (1 − 1/k)k ≥ 1/4 for k ≥ 2. In conclusion, by independence, both events

occur together with probability at least 1
3 ·

1
4 = 1

12 as desired.

Now, let Etj be the event corresponding to Eq. (4) but for the set Stj .
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Corollary 5. If Ω(m) of the events Etj for j ∈ [m] occur, then

‖F (x)− F (y)‖22 ≥ Ω(m) · (rt − rt−1)2.

In fact, we have something stronger

Ω(m) of the events {Etj | j ∈ [m]} occur for every t ∈ [log2 n]. (5)

We can make this concrete by saying that at least m/24 of the events hold (for each t) with very

high probability. This follows from a Chernoff bound.

Then, since the contributions come from disjoint sets of coordinates,

‖F (x)− F (y)‖22 ≥ Ω(m) ·
t∗∑
t=1

(rt − rt−1)2

≥ Ω
(m
t∗

)
·

(
t∗∑
t=1

(rt − rt−1)

)2

≥ Ω
(m
t∗

)
· d(x, y)2

≥ Ω

(
m

log n

)
· d(x, y)2.

The second inequality is Cauchy-Schwarz, and the third is from Eq. (3). We could plug in m/24

instead of using the Ω notation.

Combining this with Eq. (2), our map has distortion O(log n) as long as we choose m large enough

so that Eq. (5) holds with probability, say, 1−1/n3. That’s because we can then take a union bound

over all possible pairs x, y ∈ X . But since each event Etj occurs with probability at least 1/12, a

simple Chernoff bound shows that choosing some m = O(log n) suffices.
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